四边形abcd是正方形 e f分别是dc和cD上的点,且CF等于DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:51:33
这个题缺了一个条件,就是G在DC的延长线上这样,可以这么做:易证AEB与CGB全等,进而EFB与GFB全等,于是EF=FG=FC+CG=FC+AE得证!
1、证明:∵正方形ABCD∴AB=BC,∠B=∠DCH=90∵∠AEF=90∴∠AEF=∠B∵∠AEC=∠B+∠BAE,∠AEC=∠AEF+∠FEC∴∠BAE=∠FEC2、证明:∵G是AB的中点,E是
连接BD,在直线BD上(EF上方)取一点H,连接EH,HFH点是BD的中点啦用中位线定理来做EH=1/2ADHF=1/2BC在三角形EHF中两边之和大于第三边,即EH+HF>EF就是1/2AD+1/2
再问:。。。你太棒了。。。再答:能采纳我吗?
取AB中点G,连GE则BE=BG,AG=EC,∠BGE=45°∴∠AGE=180-45=135°∵∠ECF=90=45=135°∴∠AGE=∠ECF∵∠AEB+∠BAE+90°,∠AEB+∠FEC=1
延长CD至G,使DG=BE,连接AGBE=DGAB=AD∠B=∠ADG=RT∠∴△ABE≌△ADG∴∠BAE=∠DAG∠GAG=∠GAD+∠DAF=∠BAE+∠DAF∠AEF=45°=1/2∠BAD=
证明:连接EF,已知E、F分别是AB、BC的中点,所以EF平行AC,又因为AC属于平面ACD,EF不属于平面ACD,所以EF平行于平面ACD
四边形ABCD满足AC=BD,AC⊥BD时,四边形EFGH为正方形.理由如下:∵E、F、G、H分别是四边形ABCD的边AB、BC、CD、AD的中点,∴EF∥AC,且EF=12AC,EH∥BD,且EH=
“zyl9529”:答:DE=FG;BGEF的周长=4cm×2=8cm证明:延长FE交DC于H.AC是正方形ABCD的对角线,所以,AF=FE;;EG=EH;;EG⊥BC;;EF⊥AB;;所以FE=B
(1)证明:∵四边形ABCD是正方形,BE⊥BF∴AB=CB,∠ABC=∠EBF=90°(1分)∴∠ABC-∠EBC=∠EBF-∠EBC即∠ABE=∠CBF(2分)又BE=BF(3分)∴△ABE≌△C
∵正方形对角线AC平行BF∴△ACF的高=对角线BD的一半,S△ACF=S△ABC=1/2S正方形ABCD,即S阴影:8*8/2=32(平方厘米)O(∩_∩)O,希望对你有帮助,望采纳
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
EF⊥FB,∠BFC=90°,∴BF⊥面EFCD∠DFC是二面角D-BF-C的平面角.设AB=2,则DC=2FC=√2﹙⊿BFC等腰直角﹚∠DCF=90º∴tan∠DFC=2/√2=√2⑵作
题目有问题,无法证明!请确认!
G点在哪啊?如果本题有什么不明白可以追问,再问:等等,我发个图再答:∵E、F分别为AB和bC中点∴BE=CF=5/2;;∴ΔCEB≌ΔDFC∴∠BCE=∠CDF∵∠CDF+∠CFD=90°;∴∠CFD
(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而
取BE中点G,DF中点H,EF中点M连接GM,MH,GH∴MH//=1/2DE,MG//=1/2BF∴异面直线BF,DE所成角是∠GMH的补角设原正方形边长=4∴BF=DE=2√5∴MH=GM=√5∵
(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2
做点E关于DF对称点H△HEB中位线FG,所以2FG=HB延长BC到J,使CJ=BC△ECJ中位线GC,所以2GC=EJ△ADH全等于△CDEAH=CE,∠HAB=∠ECJ(∠DAH=∠DCE)AB=