四边形abcd是正方形 e f分别是dc和cD上的点,且CF等于DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:51:33
四边形ABCD是正方形,EF分别是AD,DC上的一点,且角EBF=角GBF,GC=AE求证:EF=CD+AE

这个题缺了一个条件,就是G在DC的延长线上这样,可以这么做:易证AEB与CGB全等,进而EFB与GFB全等,于是EF=FG=FC+CG=FC+AE得证!

如图4 ,四边形ABCD是边长为a的正方形,G.E分别是边AB.BC的中点,∠AEF=90°,EF交正方形外角的平分线C

1、证明:∵正方形ABCD∴AB=BC,∠B=∠DCH=90∵∠AEF=90∴∠AEF=∠B∵∠AEC=∠B+∠BAE,∠AEC=∠AEF+∠FEC∴∠BAE=∠FEC2、证明:∵G是AB的中点,E是

四边形ABCD,点EF分别是AB、CD中点,试说明AD+BC=2EF.

连接BD,在直线BD上(EF上方)取一点H,连接EH,HFH点是BD的中点啦用中位线定理来做EH=1/2ADHF=1/2BC在三角形EHF中两边之和大于第三边,即EH+HF>EF就是1/2AD+1/2

四边形ABCD是正方形,点E是BC的中点,角AEF=90 ,EF交正方形外角的平分线CF于F,求证AE=EF

取AB中点G,连GE则BE=BG,AG=EC,∠BGE=45°∴∠AGE=180-45=135°∵∠ECF=90=45=135°∴∠AGE=∠ECF∵∠AEB+∠BAE+90°,∠AEB+∠FEC=1

如图,已知四边形ABCD是正方形,过点A作角EAF=45度,分别交BC、CD于点E、F,连接EF,求证:EF=BE+DF

延长CD至G,使DG=BE,连接AGBE=DGAB=AD∠B=∠ADG=RT∠∴△ABE≌△ADG∴∠BAE=∠DAG∠GAG=∠GAD+∠DAF=∠BAE+∠DAF∠AEF=45°=1/2∠BAD=

空间四边形ABCD,E、F分别是AB、BC的中点,求证:EF//平面ACD

证明:连接EF,已知E、F分别是AB、BC的中点,所以EF平行AC,又因为AC属于平面ACD,EF不属于平面ACD,所以EF平行于平面ACD

如图所示,E、F、G、H分别是四边形ABCD的边AB、BC、CD、AD的中点,当四边形ABCD满足什么条件时,四边形EF

四边形ABCD满足AC=BD,AC⊥BD时,四边形EFGH为正方形.理由如下:∵E、F、G、H分别是四边形ABCD的边AB、BC、CD、AD的中点,∴EF∥AC,且EF=12AC,EH∥BD,且EH=

如图,四边形ABCD是正方形,点E是AC上的点,EG⊥BC,EF⊥AB

“zyl9529”:答:DE=FG;BGEF的周长=4cm×2=8cm证明:延长FE交DC于H.AC是正方形ABCD的对角线,所以,AF=FE;;EG=EH;;EG⊥BC;;EF⊥AB;;所以FE=B

如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.

(1)证明:∵四边形ABCD是正方形,BE⊥BF∴AB=CB,∠ABC=∠EBF=90°(1分)∴∠ABC-∠EBC=∠EBF-∠EBC即∠ABE=∠CBF(2分)又BE=BF(3分)∴△ABE≌△C

如图四边形abcd和befh是两个正方形,ef=8cm,求阴影部分的面积

∵正方形对角线AC平行BF∴△ACF的高=对角线BD的一半,S△ACF=S△ABC=1/2S正方形ABCD,即S阴影:8*8/2=32(平方厘米)O(∩_∩)O,希望对你有帮助,望采纳

在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF,EF‖AB,H为BC的中点,

设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O

如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=F

EF⊥FB,∠BFC=90°,∴BF⊥面EFCD∠DFC是二面角D-BF-C的平面角.设AB=2,则DC=2FC=√2﹙⊿BFC等腰直角﹚∠DCF=90º∴tan∠DFC=2/√2=√2⑵作

如图,正方形ABCD中,边长是5米,EF分别是AB、BC的中点,求四边形BFGE的面积.

G点在哪啊?如果本题有什么不明白可以追问,再问:等等,我发个图再答:∵E、F分别为AB和bC中点∴BE=CF=5/2;;∴ΔCEB≌ΔDFC∴∠BCE=∠CDF∵∠CDF+∠CFD=90°;∴∠CFD

在线等!高手进来 如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF

(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而

已知ef分别是正方形ABCD 的边AB和CD中点,沿EF把正方形折成一个直二面角

取BE中点G,DF中点H,EF中点M连接GM,MH,GH∴MH//=1/2DE,MG//=1/2BF∴异面直线BF,DE所成角是∠GMH的补角设原正方形边长=4∴BF=DE=2√5∴MH=GM=√5∵

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

关于正方形的几何题,已知四边形ABCD是一个正方形,△DFE为等腰直角三角形,DF⊥EF  DF=EF&nbs

做点E关于DF对称点H△HEB中位线FG,所以2FG=HB延长BC到J,使CJ=BC△ECJ中位线GC,所以2GC=EJ△ADH全等于△CDEAH=CE,∠HAB=∠ECJ(∠DAH=∠DCE)AB=