回归分析 常量不显著

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:12:56
关于spss的多元线性回归自变量不显著 怎么处理自变量使之显著?

不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了

spss回归分析中 模型的 常量 sig值高于0.05 这个回归还有效么?

常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:

回归方程不显著的斜率问题

当然不是,R2是用来衡量解释变量对被解释变量的解释力的,显著性需要看回归系数的t统计量或F统计量,看起在选点的显著水平下是否显著.再问:作者认为种子重量每增加1g发芽率就提高2.17%,对吗?再答:那

请问多元线性回归模型方差分析不显著,但有单独因子效应分析显著,是否要整个模型显著才行?

你这里面从各个变量的t检验看显然有变量不显著,把这些变量剔除掉重新建立新的回归模型就是了,哪儿有在这种伪回归的情况下纠结方差分析是不是显著的……再问:那有无回归模型显著,但有个别变量不显著的情况,请教

如题,spss多元线性回归分析中自变量与因变量相关关系不显著,但整个方程是显著的,其中两个分类变量转化成多个虚拟变量,使

如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.

多元线性回归分析.常量系数为负是什么意思怎么分析,而且如果在显著性水平sig大于0.5这合理不

常量系数为负是什么意思怎么分析,而且如果在显著性水平sig大于0.5这合理不?第一,常量估计值并不是负的,而是6.353.第二,其它的解释变量中,有三个系数是负值,这说明,这些自变量与因变量是反向即负

用spss进行回归分析时得出显著性水平大于0.05怎么办

以你所选取的自变量拟出的公式与实际的统计值出入比较大,建议去除相关性较小的几个自变量就有可能小于0.05.

回归分析中是先做自变量的显著性检验还是先做自相关性检验

先进性复共线性检验,如果变量之间复共线性特别大,那么进行岭回归和主成分回归,可以减少复共线性,岭回归是对变量采取了二范数约束,所以最后会压缩变量的系数,从而达到减小复共线性的目的,另外这个方法适合于p

用SPSS进行回归分析,其中的β显著不显著是什么意思?

β对应的P值大于所给的显著性水平一般取α=0.05意为β对应的变量对因变量的影响明显

计量经济学中,经常说一个回归模型里的参数在统计上是显著的或不显著的,其中”显著的“是什么意思?

参数显著的,就是说该参数估计量的统计性质可以拒绝原假设:该参数=0,即该参数显著不等于0,也就是该参数前面的变量对y确实有影响,出现在回归方程里面是有道理的.参数的显著性,是实证模型有意义的关键所在.

MInitab 回归分析 怎么看出各因素影响显著程度

简单来讲就是通过看各因素分析结果中的P值:在P值小于0.05时,P值越小影响越显著,当然也包括常数值.

spss二元logistic回归分析结果常量SIG>0.05可以构建模型吗

logit回归的结果一般不去太在意方程.数据发我,我看看再问:大哥(姐),做财务预警模型要有ST公司,我想问一下找得到30或35家2010年被首次ST的公司吗?

spss进行线性回归分析时,相关系数都符合,但是显著性不符合,如何调整

你是想调整数据呢还是想调整什么呢?线性回归时候,相关系数只是表明了各个系数之间的相关程度.但是自变量对因变量不显著的话,只能说明自变量多因变量影响不大,可以考虑换其他的跟因变量关系更加大的变量.或者在

EXCEL作回归分析中显著性判断!

看来LZ应该是刚开始作统计分析啊,其实里面的数据还是比较简单的,第一行MultipleR表示R^2的值,第二行则表示R值,第三行表示调整R方,一般R^2是衡量回归方程是否显著的决定因子,但只是一方面.

SPSS相关性不显著还要继续回归分析吗

刚看了一篇外文文献,其中提到了几个变量之间的相关性分析.作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著.随后继续作回归性分析(未阐明是否是多元线性)结论是BETA值

SPSS回归分析,谁能不帮我看看这个结果是不是显著地

按图片的结果来看,R2真是比较低,但后面的方差和B值基本都极其显著.可以这么说,理论上模型是有效的,但主要是通过常数项来影响因变量.就是常数项的值和因变量的值比较接近,自变量分数乘以系数,相对常数来说

spss 回归分析二次曲线回归,R比较高,但是二次项系数显著程度能达到0.5 是不是不显著的意思?线性回归,回归系数是显

不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。

回归分析中如何让虚拟变量和因变量有显著相关性?

虚拟变量,你可以试试0-1这样的虚拟变量,含0的,对应的y低,含1的对应的y高(假设正相关).其实主要看你的虚拟变量打算加在哪里,加在常数项就这么做,加在系数项的话就是另外一组数据了.你可以先写个含虚

急求SPSS回归分析的回归系数为负时如何比较谁的影响更显著

回归系数比较大小是通过绝对值的比较,同时应该看后面的标准化回归系数进行比较影响的大小

只有相关显著的自变量才可以和因变量进行回归分析吗?

个人建议你是先做所有变量的多元回归,因为你在做自变量与因变量间的相关系数时,是排除了其他变量的影响,而在做多元回归时,变量间有可能存在影响的.然后再看回归的结果,比如R平方,F值,方程的显著性,系数的