圆o中ae为直径 ab⊥cd.求证弧bc等于弧ed

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:43:17
如图所示,AB为圆O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F,AE=3,BF=5.圆O的半径为5,求CD的长

你没有把图画出来,我按照你的题意画了一幅图,你看看是否正确再问:我能不能加你QQ以后有问题我可以问你。。。

AB为圆O的直径,切弦CD⊥AB于点E,CD=16,AE=4,求OE的长

设半径为R∵CD⊥AB∴CE=DE=CD/2=8(垂径分弦),OC²=CE²+OE²∵OE=OA-AE=R-4∴R²=64+(R-4)²∴R=10∴O

如图,四边形ABCD内接于圆O CD//AB AB为直径 AE垂直CD交CD延长线于E AE=2,CD=3 求圆O直径

取CD的中点F,则OF=AE=2,且OF⊥CD,CF=3/2所以OC^2=2^2+(3/2)^2=25/4,OC=5/2所以直径等于5.

如图,在⊙O中,直径AB⊥弦CD,E为垂足,AE=4,CE=6,求⊙O的半径.

连接OB,设⊙O的半径是R,∴CD⊥AB,CD过O,∴AB=2AE=2BE,AE=BE=4,在Rt△OBE中,由勾股定理得:OB2=BE2+OE2,即R2=42+(R-6)2,R=133,答:⊙O的半

如图,圆O中,AB,CD为直径,弦CE平行于AB,求证弧AE=弧AD

证明:连接AC  ∵∠AOD=∠BOC  ∴弧AD=弧BC  ∵弦CE‖AB  ∴∠BAC=∠ACE  ∴弧BC=弧AE  ∴弧AE=弧AD

在圆O中,AB是圆O的直径,CD是弦,点E,F在BC上,EC⊥CD,FD⊥CD求AE=BF

在圆O中,AB是圆O的直径,CD是弦,点E,F在BC上,EC⊥CD,FD⊥CD,求证:AE=BF证明:过O作OG⊥CD,交CD于G.因为O是圆心,故G点平分CD,即CG=GD.因为EC⊥CD,FD⊥C

已知;AB为圆O的直径,CD为弦,CE⊥CD交AB于E DF⊥CD交AB于F求证;AE=BF

证明:过O作OG⊥CD,由垂径定理可知OG垂直平分CD,则CG=DG,∵CE⊥CD,DF⊥CD,OG⊥CD,∴CE∥OG∥DF,∵CG=DG,∴OE=OF,∵OA=OB,∴AE=BF.再问:为什么OE

已知AB是圆O的直径,弦CD⊥AB于E,若弦CD把圆O分成2:1的两部分,且CD=4根号3,求圆O的直径及AE的长.

/>连接OC,OD∵弦CD把圆O分成2:1的两部分∴∠COD=120°∴CE=2根号3∴OC=4∴圆O的直径=8∵∠C=30°∴OE=2∴AE=6或2

如图所示,AB是圆O的直径,CD为弦.AE⊥CD于E,BF⊥CD于F,若AB=10,AE=3,BF=5,求EC的长

本题符号注3/8   表示八分之三           &n

在圆O中,AB为圆O的直径,弦CD与AB交于点E,若AE=7,BE=3,角AEC=60°,求CD的长

过点O作OM⊥CD于点MAB=AE+BE=7+3=10OA=10/2=5OE=AE-OA=7-5=2在直角三角形OME中,∠AEC=60°EM=OE/2=2/2=1OM⊥CDCM=DM根据相交弦定理得

已知,在圆O中,直径AB⊥弦CD,E为垂足,AE=4,CE=6,求圆O的半径,如图

连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5

⊙O中,AB,CD为直径,弦CE //AB,求证:AE=AD

证明:连接OE,三角形EOC为等腰三角形,角OCE=角CEO因为CE//AB,所以,角AOE=角CEO同理,角COB=角OCE因此,角COB=角OCE=角CEO=角AOE=角AOD相等的角对应的弦也相

如图,AB是⊙O的直径,CD是弦,AE⊥CD于E,BF⊥CD于F,已知⊙O的半径为5cm,AE=3cm,BF=5cm,求

过点O作OG⊥CD于点G,连接OG,∵点O是圆心,∴CG=12CD.∵点O是AB的中点,AE⊥CD于E,BF⊥CD于F,∴OG是梯形AEFB的中位线,∵AE=3cm,BF=5cm,∴OG=3+52=4

AB为圆O的直径,弦CD交AB于点E,AE=3,BE=5,∠AEC=30°,求CD的长

过圆心O做OH⊥CD由题意可得,圆O半径为4∴OE=1在直角三角形EOH中又∵∠CEA=∠OEH=30°∴2OH=OEOH=0.5在直角三角形OHC中用勾股定理算出CH=(3√7)/2由垂径定理可得,

如图所示 AB为圆O的直径,且AB⊥弦CD于E,CD=16,AE=4,求OE的长

设半径为R∵AB⊥CD∴CE=DE=CD/2=8(垂径分弦),OC²=CE²+OE²∵OE=OA-AE=R-4∴R²=64+(R-4)²∴R=10∴O

如图,AB是圆O的直径,CD是弦,AE⊥CD,BF⊥CD,E,F分别为垂足,BF交半圆于G.

证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC

已知:AB是圆O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,求证:EC=DF

过O作OG⊥CD于G∵O为圆心,CD为弦,OG⊥CD∴CG=DG(弦的过圆心垂线平分弦)又∵AE⊥CD,BF⊥CD∴AE‖BF∴OA/OB=EG/FG(相似)又∵OA=OB∴EG=FG又∵CG=DG∴

AB为圆O直径,弦CD⊥AB于E,若AC等于2倍根号10CM,AE:EB=4:1,求AE的长

设AE,EB长分别是4x,x,则AB长是5x,因为AB是直径,所以角ACB是直角,从而三角形ABC与三角形ACE相似,于是AB:AC=AC:AE,代入AC及所设的AE,AB值得:40=20x^2,所以

已知⊙o中弦AB⊥直径CD,垂足为点F,点E在AB上.EA=EC.求证:AC*AC=AE*AB

连AC,BC,CE因为弦AB⊥直径CD,所以CD垂直平分AB,AC=BC∠A=∠B又因为EA=EC,所以∠A=∠ACE所以,△ABC~△ACE所以,AC/AB=AE/ACAC*AC=AE*AB补充:因