圆o是三角形abc的外接圆 ac是直径 过o作od垂直ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:39:58
结果就是一个值,即BC=4,解答如图所示,有兴趣的话百度“阿基米德折弦定理”就可知道这题的背景:这样做也可以:
因CG垂直于AB,则CD=DG且弧AC=AG;因弧AC等于弧CF,所以弧AG=CF;则角ACG=CAF所以三角形ACE为等腰三角形,AE=CE
连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
三分之根号5再问:求过程再答:别忘了赞一个。因为弧ac,所以∠b等于∠d。因为ad是直径,所以∠dca是90度,由勾股得,dc为根号五,cos∠d等于ad分之dc等于三分之根号五。
由正弦定理:SinB/AC=2rSinB/2=3所以SinB=6
连接dc因为ad为直径所以角acd为直角角abc等于角cad又因为角abc和角adc弧ac所对应的圆周角所以两角相等即三角形cad为等腰直角三角形因为oa为5所以ad为10所以ac等于cd等于五倍的根
证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF
证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
在求解答网能搜到原题,这地方专门搜数理化的,可以试试哦,一下是答案
好几年不学了想了好久.连接AO连接BO并延长交AC与E证明角AOC等于2倍角B等于120我忘了这到底有现成的定理什么的,可以自己证明.AO=BO=OC所以角AOE等于2倍的角OBC.角COE等于2倍的
你能求出第一问,说明你已经发现AE其实是△ABC外接圆的直径,设外接圆圆心为QQE=r=1.5,DE=0.6∴QD=0.9∵O是外心,而AB=AC∴AO是△ABC的高和中线∴AE⊥BC,BD=CD有勾
(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+
连接DC,角D=角B,AC垂直CD,求得CD=根号21,则角C正切为2/根号21,即得答案再问:角C正切为2/根号21??应该是角D吧??