圆O的直径FD⊥AB于点H,E是BF上一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:26:56
1、连接OG∵KE=GE∴∠EGK=∠EKG=∠AKH∵OA=OO,那么∠OAG=∠OGA=∠HAK∵AB⊥AD,那么∠AHK=90°∴∠AKH+∠HAK=90°即∠EGK+∠OGA=90°∴∠OGE
因为AF=3GF=2所以AG=√5tan∠ADG=AG/GD=√5/4又因为∠ADG=∠E所以tan∠E=√5/4
(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等
1.连接OCCD⊥AB于点E,∴BC=BD(垂径定理)∴∠BCD=∠D=30°(等弦所对的圆周角相等)又因∠BEC=90°,BC=1∴BE=BC/2=1/2CE=√(BC²-BE²
逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为
∵AB为直径∴∠ACB=90°∵CD⊥AB∴∠ACH+∠CAB=90°∠ABC+∠CAB=90°∴∠ACH=∠ABC∵O为圆心,AB为直径∴OB=OC=OA∴∠OCB=∠OBC=∠ABC∵CE为∠OC
因为CD⊥AB,所以CE=CD/2=3,因为AE=√3,所以,AC=2√3,∠ACB=90,所以AC2+CB2=(AE+EB)2BC2=CE2+EB2AC2+CE2+EB2=(AE+EB)212+9+
当△PCF满足PC=PF时,PC与圆O相切,理由,若PC=PF所以∠PCF=∠PFC因为∠PFC=∠AFH所以∠PCF=∠AFH因为AB为直径所以∠A+∠B=90°因为PH⊥AB所以∠A+
证明:因为:△BDH相似于△ADCDH/DC=BD/ADDH×DA=DCxBD再连接MB、MC,则角BMC=90°所以:△BDM相似于△MDCDM^2=DCxBD故DM^2=DH×DA
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
第一问 PO× PE=PD× PC 第二问 若DE垂直于CF, ∠P=15度 , 圆0O的半径为2 
yclooo,证明:(1)连结OD,因为圆心角角AOD对于弧AD,弧AD是弧DF的一半,而圆周角DCF对应弧DF,所以有:∠AOD=∠DCF∵∠DOP=180°-∠AOD,∠ECP=180°-∠DCF
证明:连接AE,则∠AEB=90° ∵CD⊥AB  
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
∵OE⊥BC∴E为BC中点∴BE=CE=4设半径为r则OD=rOE=OD-ED=r-2在三角形OBE中有OB²=BE²+OE²即r²=4²+(r-2)
(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH;(2)连接BD
这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定
连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC
方法一: ∠CFD = ∠COA = ∠DOA =固定值=> ∠PFE = ∠DOE&nbs