圆O的直径FD⊥AB于点H,E是BF上一动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:26:56
如图AB是圆O的直径,弦CD垂直AB于点H,G是圆O上一点,E点在CD的延长线上,连结EG交AB的延长线于F,KE=GE

1、连接OG∵KE=GE∴∠EGK=∠EKG=∠AKH∵OA=OO,那么∠OAG=∠OGA=∠HAK∵AB⊥AD,那么∠AHK=90°∴∠AKH+∠HAK=90°即∠EGK+∠OGA=90°∴∠OGE

ab是圆o的直径弦cd垂直于ab于点g点f是cd上一点满足cf/fd=1/3连接af并延长交圆o于点e连结adde若cf

因为AF=3GF=2所以AG=√5tan∠ADG=AG/GD=√5/4又因为∠ADG=∠E所以tan∠E=√5/4

如图,AB为圆O的直径,CD⊥AB于点E,交圆O于C、D两点,OF⊥AC于点F

(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等

如图,AB为圆O的直径,CD⊥AB于点E,叫圆O与点D,OF⊥AC于点F.

1.连接OCCD⊥AB于点E,∴BC=BD(垂径定理)∴∠BCD=∠D=30°(等弦所对的圆周角相等)又因∠BEC=90°,BC=1∴BE=BC/2=1/2CE=√(BC²-BE²

如图,已知AB,AC分别是圆O的直径和弦,D为劣弧AC上一点,DE垂直于AB于点H,交圆O于点E,交AC于点F,P为ED

逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为

如图,AB为圆O的直径,CD为圆O的弦,且CD⊥AB,垂足为H,∠OCD的平分线CE交圆O于点E,连接OE,求证:E为A

∵AB为直径∴∠ACB=90°∵CD⊥AB∴∠ACH+∠CAB=90°∠ABC+∠CAB=90°∴∠ACH=∠ABC∵O为圆心,AB为直径∴OB=OC=OA∴∠OCB=∠OBC=∠ABC∵CE为∠OC

AB是圆O的直径,弦 CD⊥AB于点E,AE=√3,DC= 6,P是圆弧BC的中点,CF平分∠DCP,交AP于点H,连结

因为CD⊥AB,所以CE=CD/2=3,因为AE=√3,所以,AC=2√3,∠ACB=90,所以AC2+CB2=(AE+EB)2BC2=CE2+EB2AC2+CE2+EB2=(AE+EB)212+9+

如图,已知AB分别是圆O的直径和弦,D为劣弧AC上一点,DE垂直于AB于点H,交圆O于点E,交AC于点F,

 当△PCF满足PC=PF时,PC与圆O相切,理由,若PC=PF所以∠PCF=∠PFC因为∠PFC=∠AFH所以∠PCF=∠AFH因为AB为直径所以∠A+∠B=90°因为PH⊥AB所以∠A+

如图,以△ABC的边BC为直径作圆O分别交AB、AC于点F点E,AD⊥BC于D,AD交于圆O于M,交BE于H,求证:DM

证明:因为:△BDH相似于△ADCDH/DC=BD/ADDH×DA=DCxBD再连接MB、MC,则角BMC=90°所以:△BDM相似于△MDCDM^2=DCxBD故DM^2=DH×DA

如图,AB为⊙O的直径,弦CD⊥AB于点E.

(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,

P是圆O的直径AB延长线的一点,PCD交圆O于点C,D.弦DF⊥AB于点H,CF交AB于E.①求证

第一问 PO× PE=PD× PC  第二问 若DE垂直于CF, ∠P=15度 , 圆0O的半径为2 

已知P是圆O直径AB延长线上的一点,割线PCD交圆O于C,D两点,弦DF垂直AB于点H,CF交AB于点E.求证PA*PB

yclooo,证明:(1)连结OD,因为圆心角角AOD对于弧AD,弧AD是弧DF的一半,而圆周角DCF对应弧DF,所以有:∠AOD=∠DCF∵∠DOP=180°-∠AOD,∠ECP=180°-∠DCF

如图,AB为圆O的直径,点E为弧AC的中点,CD⊥AB于点D,BE分别交CD CA于点H F,证明CH=CF

证明:连接AE,则∠AEB=90°         ∵CD⊥AB    

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

AB是圆O的直径,BC为弦,OD⊥CB于点E,交BCfu于点D

∵OE⊥BC∴E为BC中点∴BE=CE=4设半径为r则OD=rOE=OD-ED=r-2在三角形OBE中有OB²=BE²+OE²即r²=4²+(r-2)

已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是

(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH;(2)连接BD

如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.

这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定

已知:AB是圆O的直径,弦CD⊥AB于点G,E是直径AB上一点,直线DE交圆O于点F,

连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC