在rt△ABC中,AB=AC=6根号2,BAC=90°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:18:31
∵AC=5/13AB设AC=5k,则AB=13k根据勾股定理BC=12k所以sinA=5/13cosA=12/13tanA=5/12cotA=12/5
(1)∵Rt△ABC中,a=6,b=10,∴c=b2−a2=102−62=8;(2))∵Rt△ABC中,a=24,c=25,∴b=c2+a2=252+242=1201.
应用勾股定理:BC^2=AB^2-AC^2.BC^2=(3√2)^2-(2√2)^2.=18-8.=10.BC=√10.三角形ABC的周长L=3√2+2√2+√10.L=√2(3+2+√5).=√2(
因为:AC:AB=1/√3=cosA所以:可以看做AC=1,AB=√3,求得BC=√2所以:sinA=(√2)/(√3)=(√6)/3也可以这样算:sinA=√[1-(cosA)²]=√[1
证明:在Rt△ABC和Rt△BAD中,AB=BAAC=BD,∴Rt△ABC≌Rt△BAD,∴∠BAD=∠ABC,∴AE=BE.
1、连接AD∵AB=AC,D是BC的中点∴AD是△ABC的中垂线∵∠A=90°∴∠B=∠C=45°∴∠DAC=45°=∠C∴CD=AD=BD2、∵AN=BM,AD=BD,∠NAD=∠B∴△AND≌BM
1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△
(1)证明:∵∠AEC与∠BED是对顶角,∴∠AEC=∠BED,在△ACE和△BDE中,∠AEC=∠BED∠C=∠D=90°AC=BD∴△ACE≌△BDE(AAS),(3分)∴AE=BE;(4分)(2
∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R
(Ⅰ)(1)证明:在图①中,连接OE,OF,OA.∵⊙O是△ABC的内切圆,与三边分别相切于点E、F、G.∴OF⊥BC,OE⊥AC,∠ACB=90°,∴四边形CEOF是矩形,又∵EO=OF,∴四边形C
∵(AB+BC)²=AB²+BC²+2AB·BC,(平方和公式,勾股定理)17²=12²+4(½AB·BC),∴rt△ABC面积=½
根据勾股定理直角边的平方和=斜边平方即ac*ac+bc*bc=ab*ab又AC:BC=5:12,化简得ac:bc:ab=5:12:13ab=26得出ac=10,bc=24
有图么,没图就要分情况,有可能是角ABC是90度,那样AC的平方=AB平方+BC平方=25角BAC是90度,AC平方=BC平方-AB平方=7有图就对照着看谁是90度,直角三角形两直角边的平方等于斜边的
∵在Rt△ABC中:∠C=90°,AC=5,AB=13∴BC²=AB²-AC²=13²-5²=12²BC=12∴tanB=AC/BC=5/1
设AC=9KAB=41k勾股定理(41k)^2-(9k)^2=200^2k=5所以AC=9*5=45AB=41*5=205
令EF与AC交于点Q;DF与BC交于点M,与AC交于点N由转动得CP=BP=3,PF=CF=2,直角三角形CPQ中PQ:CP=3:4,所以PQ=1.5,FQ=0.5S=三角形PFM-FQN=CPQ-F
证明:∵∠BAC=90°,AD⊥BC,∴∠3+∠ABC=∠C+∠ABC=90°,∴∠3=∠C,∵EF∥AC,∴∠C=∠EFB,∴∠EFB=∠3,∵BE平分∠ABC,∴∠1=∠2,在△ABE和△BFE中
这个问题很好办.首先这是个直角三角形,可以根据勾股定理即:AC的平方+BC的平方=AB的平方求出BC=12然后,下一步就求tanA和tanB,tanA=BC/AC=12/5,tanB=AC/BC=5/
因为AC=5,AB=13所以BC=12所以sinA=12/13
a:c=1/2,求b=根号(c^2-a^2)=根号3/2cb:c=根号3:2a:c=√2:√3,c=6√3,a=6√2b=根号(c^2-a^2)=6