在rt三角形ADC中角acb=90度ac等于3ac=4以点C为圆心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:15:24
∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/
容易证明:三角形ACD与三角形BCD相似所以,三角形ACD与三角形BCD的面积比=(BC/AC)^2=(1/√3)^2=1/3
设圆的半径为R,则OD=OE=R1、∵圆O切BC于E,切AC于D,∠ACB=90∴正方形CDOE∴CE=CD=R,OE∥AC∴BE/BC=OE/AC∵BC=2∴BE=2-R∵AC=4∴(2-R)/2=
证明:∵AC^2=3BC^2,Rt△ABC中,∠ACB=90°∴AC^2+BC^2=AB^2∴3BC^2+BC^2=AB^2∴AB=2BC∴∠A=30°(在直角三角形是,如果一直角边等于斜边的一半,那
因为AB=2AC,D为AB边上中点所以,AD=AC因为在Rt三角形ABC中,COS角CAB=AC\AB=1\2所以角A=60度因为AD=AC所以三角形ADC为等边三角形再问:cos是什么意思再答:你们
解题思路:在Rt△ABC中,易求得∠ABC的度数,根据旋转的性质知:∠ABC、∠B′相等,∠A、∠A′相等,BC=B′C,由此可得∠CBB′的度数,进而由三角形的外角性质求得∠BCA′的度数,即可得到
∵ACB=90,且D为AB的中点∴AD=DB=DC(直角三角形斜边中线等于斜边的一半)由翻折可知:AD=AE,CD=EC∴AE=AD=DC=CE∴四边形ABCE为菱形∴EC∥AB
∵CD是边AB上的中线∴AD=DC=Rt△ABC外接圆的半径(直角三角形斜边上的中点是三角形外接圆的圆心)∴∠ACD=∠A(等腰三角形底角相等)又∵∠ADC=70°∴∠ACD=(180°-70°)/2
∵AD,CD是角平分线∠ADC=180°-1/2(∠ACB+∠BAC)=130°∴1/2(∠ACB+∠BAC)=50°∴∠ACB+∠BAC=100°∴∠ABC=80°∵AB=AC∴∠ACB=80°∴∠
1.因为△ABC& △ADC为两直角三角形,且共斜边,因此A,B,C,D共圆,且AC为圆之直径因为E为AC中点,即是直径中点-圆心,因此EA=EB=EC=ED=圆半径因为EB=ED,
∵AD,CD是角平分线∠ADC=180°-1/2(∠ACB+∠BAC)=130°∴1/2(∠ACB+∠BAC)=50°∴∠ACB+∠BAC=100°∴∠ABC=80°∵AB=AC∴∠ACB=80°∴∠
证明:∵∠ACB=90∴a²+b²=c²,S△ABC=a×b/2∵CD⊥AB∴S△ABC=c×h/2∴a×b/2=c×h/2∴a×b=c×h∴ab=ch∴1/a²
角ACB=90°,角ACB=30度这个角很神奇
CD垂直AB于点D∠A+∠ACD=90∠A+∠B=90E为AB中点BE=EC(直角三角形中.斜边上的中线为斜边的一半)∠B=∠ECB∠ADC=∠ECB
wenku.baidu.com/...4.html见第25题
欲使四边形QPCP'为菱形,必须PC=PQ(AC-AD)²+PD²=PE²+(BC-EC-BQ)²∵AP=√2t,∴AD=PD=EC=t(6-t)
图中:BC>AC,依照这个做的1、∵M是Rt△ABC斜边AB的中点∴∠B=∠BCM∵CH⊥AB∴∠ACH=∠B(同为∠BCH的余角)∴∠ACH=∠BCM∵CG平分∠ACB∴∠ACG=∠BCG∴∠ACG