在RT三角形中,ACB=90 以AC为直径作圆o交

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:45:46
如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

如图,在RT三角形ABC中,∠ACB=90,AC=5,CB=12

证明:由于△ABC为直角三角形,且∠ACB=90°,且D在圆上则有AD为直径从而有∠AED=90°因为∠ACB=∠AED=90°,AD=AD,∠CAD=∠EAD所以△ACD全等于△AED所以AE=AC

如图,在RT三角形ABC中,角ACB=90度,角A小于角B.以AB边上的中线CM为折痕将三角形ACM折叠,使点A落在D处

由题得:CM=AM,角MCA=角A,三角形ACM全等于三角形DCM,所以角DCM等于角ACM等于角A,又角CMB等于两倍的角A,且角CMB加角MCD等于90度,即3倍的角A等于90度,所以角A等于30

Rt三角形ABC中,角ACB=90,AC=4,BC=2在RT三角形ABC中,角ACB=90度,AC=4,BC=2,以AB

设圆的半径为R,则OD=OE=R1、∵圆O切BC于E,切AC于D,∠ACB=90∴正方形CDOE∴CE=CD=R,OE∥AC∴BE/BC=OE/AC∵BC=2∴BE=2-R∵AC=4∴(2-R)/2=

如图,在三角形ABC中,角ACB=90°,AC=3,AB=5.将RT三角形ABC以AB边所在的直线为轴旋一周.你能求出所

∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R

如图,在Rt△ABC中,角ACB=90度,角a等于35度,以直角顶点c为旋转中心,将三角形abc旋转到三角形a’B

∠A'=∠A=35º,∠B'=∠CBA=∠B'BC=55º,∠B'CB=70º,∠BCD=20º,∠BDC=75º再问:#是什么意思再答:太不具体,说

在Rt三角形ABC中,∠ACB=90°,∠A=35°

解题思路:在Rt△ABC中,易求得∠ABC的度数,根据旋转的性质知:∠ABC、∠B′相等,∠A、∠A′相等,BC=B′C,由此可得∠CBB′的度数,进而由三角形的外角性质求得∠BCA′的度数,即可得到

在Rt三角形ABC中,∠ACB=90°,∠A=35°求∠DC

解题思路:根据直角三角形两锐角互余求出∠ABC=55°,再根据旋转的旋转可得∠F=∠ABC,CF=CB,∠BCF=∠ECA,再根据等腰三角形两底角相等求出∠BCF,即可得解.解题过程:

在Rt三角形中,∠ACB=90°,CD⊥AB于D,BC=7,BD=5

求出CD=2√6sinB=CD/BC=2√6/7cosB=BD/BC=5/7sinA=cosB=5/7cosA=sinB=2√6/7tanA=sinA/cosA=BD/CD=5√6/12

在RT三角形ABC中∠ACB=90°COSA=三分之二BC=5求AB

cosA=2/3sin²A+cos²A=1所以sinA=√5/3sinA=BC/ABAB=BC/sinA=5/(√5/3)=3√5

在RT三角形ABC中,ACB=90,AC=AE,BD=BC,则ACD+BCE=____

两个等腰三角形中AEC=(180-A)/2;BDC=(180-B)/2;所以DCE=45;所以ACD+BCE=90-DCE=45

如图,在Rt三角形ABC中,角ACB=90度,AC=BC=6

欲使四边形QPCP'为菱形,必须PC=PQ(AC-AD)²+PD²=PE²+(BC-EC-BQ)²∵AP=√2t,∴AD=PD=EC=t(6-t)

Rt△ABC中,∠ACB=90°,AC=b,BC=a 在三角形内接正方形

由三角形BED相似于三角形BCA可得BE:BC=DE:AC即(3-CE):3=DE:4解得DE=12/7再问:第二小题呢再答:还是设正方形的边长是x,利用三角形相似得到MN:AB=CM:CA即x:5=

已知,在Rt三角形ABC中,角ACB=90°,CH⊥于AB,CM是AB边上的中线,CG是角ACB的平分线,

图中:BC>AC,依照这个做的1、∵M是Rt△ABC斜边AB的中点∴∠B=∠BCM∵CH⊥AB∴∠ACH=∠B(同为∠BCH的余角)∴∠ACH=∠BCM∵CG平分∠ACB∴∠ACG=∠BCG∴∠ACG

在rt三角形abc中,角acb=90°,bc>ac,圆o是三角形abc的外接圆,以c为圆心,bc为半径作

(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+