在zo=1 i 处展开成泰勒级数的收敛半径为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:11:57
你先参照公式展开最后把一带进去惊奇的发现你床罩了一个奇迹!
利用已知级数 1/(1+x)=∑(n=1~inf.)(-x)^(n-1),|x|积分,可得 ln(1+x)=∫[0,x][1/(1+t)]dt=∑(n=1~inf.)∫[0,x](-t)^(n
1、x^4/(1-x)=x^4(1+x+x²+...)=x^4+x^5+x^6+...=Σx^(n+4)n=0→∞2、lnx=ln(2+x-2)=ln[2(1+(x-2)/2)]=ln2+l
f(x)=1/(x+4)=1/[6+(x-2)]=1/6*1/(1+(x-2)/6)=1/6Σ(-1)^n*(x-2)^n(n从0到∞)|x-2|
由1/(1-z)=1+z+z^2+z^3+...将z换成-z^3得:f(z)=1/(1+z^3)=1-z^3+z^6-z^9+z^12.再问:加我QQ2605316413,有点事咱们商量下呗~
先裂项f(z)=z/(z+1)(z+2)=-1/(1+z)+2/(2+z)再根据需要变项f(z)=-1/(3+z-2)+2/(4+z-2)=(-1/3){1/[1-[(-1)(z-2)/3]}+(1/
再问:给个过程吧。。再答:
symsx>>s=taylor(x/sqrt(1-x),n)%n-1阶泰勒级数展开s=(n-x)^2*((3*n)/(8*(1-n)^(5/2))+1/(2*(1-n)^(3/2)))-(n-x)^3
http://zhidao.baidu.com/question/1573006147639716580.html?oldq=1
然后你把图中的x用-x代替即可,容易发现所有的项都变成了负号
不是这样的,有很多方法可以稍微转化一下即可实现计算.比如:对数函数:ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k+..(|x|1时的值了.
几阶,带有佩亚诺余项还是拉格朗日余项?再问:原题就是这么写的…再答:再答:简单的说任何一个式子都可以化成关于(X-X0)的n次多项式,其中x0可以是任意数字,打个比方,最简单的x^2这个式子,可以化成
参考http://zhidao.baidu.com/question/538153965.html?from=pubpage&msgtype=2
详细计算已经不会了,不过z是一个奇点,收敛半径应该是1吧!
给你个网址,别人已有解答哦:
令f(x)=ln(1+x),则f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k;(k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方f(x)=f(x0)+∑f
把函数展开成在x=1处的泰勒级数是写成x-1的形式,如果是x=-1处,则写成x+1的形式.总之,在x=x0处展开就是写成x-x0的形式,分别令x0=1和-1就知道写成什么形式了.