在△abc中,ab=ac=2,BC=2根号3,则ABAC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:51:39
在△ABC中,AB=2,AC=2

本题分两种情况:①下图左边的图时,AD为BC边上的高.由AB=2,AC=2,∠B=30°得,AD=ABsinB=2×0.5=1,∵sin∠ACD=AD:AC=1:2=22,∴∠ACD=45°=∠B+∠

在△ABC中,AB大于AC,AD是中线,AE是高,证明:AB*AB-AC*AC=2BC*DE

倒数第四行EC=DC-EC=BD-EC应该是EC=DC-ED=BD-ED下来知道了吧

如图所示,在△ABC中,AD平分∠BAC,CD⊥AC,AD=BD.求证:AB=2AC.

从D点向AB做垂线交AB于H,由于AD=BD,△ADB是等腰三角形,它的高DH平分AB,AB=2AH,由于AD平分∠BAC,CD⊥AC,所以AH=AC,所以AB=2AC.

在△ABC中,已知AB•AC=-2,|AB|•|AC|=4,则△ABC的面积为 ___ .

∵在△ABC中,已知AB•AC=-2,|AB|•|AC|=4,可得4×cosA=-2,解得cosA=-12,∴A=2π3.故△ABC的面积为12×|AB|•|AC|×sinA=12×4×32=3,故答

在△ABC中,AB=1,AC=2,求角C的最大值

尊敬的michalifu:您好.在三角形ABC中,只有当AB垂直於AC时,角C的值才最大,这时三角形ABC就是一个直角三角形,AB是直角边,AC是斜边,当对边和斜边之比为1:2时,这个角是30度.所以

在三角形ABC中,AB=AC,

证明:因为AB=AC,所以三角形ABC是等腰三角形;由

如图所示,在△ABC中,DF经过△ABC的重心G,且DF//AB,DE//AC,连接EF,如果BC=5,AC=根号2AB

证明:连接CG交AB于点H,由于G是△ABC的重心,可知CG:GH=2:1,于是CG:CH=2:3因为DF//AB,所以DF:AB=CD:CB=CG:CH=2:3,所以DF=2/3AB因为DE//AC

在△ABC中AB=15 AC=13

解题思路:本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△AB

在△ABC中,AB=1,AC=2,求C的最大值

三角形的关系是设三个边分别为abca^2+b^2>c^2a^2-b^2

在△ABC中,AB:AC=5:3,AB-AC=4厘米,求(1)AB、AC的长(2)求BC边长的范围

(1)由AB:AC=5:3,AB-AC=4厘米条件解出AB=10cm,AC=6cm(2)设AB=5x,则AC=3x.∵AB-AC=4,∴x=2,∴AB=10,AC=6,∴4cm<BC<16cm.

在△ABC中,AB=AC=10,BC=12,求△ABC

解题思路:通过作辅助线AD⊥BC,可将求△ABC外接圆的半径转化为求Rt△BOD的斜边长.解题过程:解:如图,作AD⊥BC,垂足为D,所以AD==8;设OA=r,OB2=OD2+BD2,即r

△ABC中,AB=AC,

在三角形AEC中利用余弦公式求出CE与AC的关系.再根据三角形BEC周长为20,BC=9,即可求出BE长度从而三角形ABC的周长=AC+AB+BC=4BE+BC即可求出!

如图.在△ABC中,AB=AC,

10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X

在△ABC中,AB=2,AC=6

如图由余弦定理得:cosB=AB2+BC2−AC22AB•BC=22+(1+3)2−(6)22×2×(1+3)=12,因为B∈(0,π),所以B=π3,故AD=ABsinπ3=2×32=3.故答案为:

在△ABC中,AB=2AC,∠BAD=∠CAD,DA=DB,求证:DC⊥AC.

解;设(令)AB的中点为E连接点E与点D∵AE=BEDA=DBED=ED∴△AED≌BED∴∠AED=∠BED∴∠AED=90(∵∠AEB=180)∵AB=2ACE为AB中点∴AE=AC∵∠BAD=∠

在△ABC中,AB=3,AC=2,BC=10,则AB•AC=(  )

∵由余弦定理得cosA=9+4−102×3×2,∴cos∠CAB=14,∴AB•AC=3×2×14=32,故选D

在△ABC中,∠BAD= ∠CAD,DA=DB,AB=2AC 求证:DC⊥AC

不知道你是几年级的.过D点做AB的垂线DE,使E点在AB上∵DA=DB∴∠DAB=∠DBA∵DE⊥AB∴E点为AB中点(等腰三角形中线跟高线是一条线,你们应该学过吧?)又∵AB=2AC∴AE=EB=A

数学问题 在△ABC中,若|AB|^2=|BC|^2+|AC|^2-|BC|*|AC|,则角C的大小

记△ABC中,BC=a,AC=b,AB=c则|AB|^2=|BC|^2+|AC|^2-|BC|*|AC|可写成:c^2=a^2+b^2-ab∵c^2=a^2+b^2-2abcosC∴2cosC=1即c

在△ABC中,若|AB|^2=|BC|^2+|AC|^2-|BC

求什么,说清楚再问:会了谢谢

在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,DE=DF,

1.△ABC∽△DEF应该很好判断AB=AC、DE=DF、