在△abc中,ab=ac=2,BC=2根号3,则ABAC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:51:39
本题分两种情况:①下图左边的图时,AD为BC边上的高.由AB=2,AC=2,∠B=30°得,AD=ABsinB=2×0.5=1,∵sin∠ACD=AD:AC=1:2=22,∴∠ACD=45°=∠B+∠
倒数第四行EC=DC-EC=BD-EC应该是EC=DC-ED=BD-ED下来知道了吧
从D点向AB做垂线交AB于H,由于AD=BD,△ADB是等腰三角形,它的高DH平分AB,AB=2AH,由于AD平分∠BAC,CD⊥AC,所以AH=AC,所以AB=2AC.
∵在△ABC中,已知AB•AC=-2,|AB|•|AC|=4,可得4×cosA=-2,解得cosA=-12,∴A=2π3.故△ABC的面积为12×|AB|•|AC|×sinA=12×4×32=3,故答
尊敬的michalifu:您好.在三角形ABC中,只有当AB垂直於AC时,角C的值才最大,这时三角形ABC就是一个直角三角形,AB是直角边,AC是斜边,当对边和斜边之比为1:2时,这个角是30度.所以
证明:因为AB=AC,所以三角形ABC是等腰三角形;由
证明:连接CG交AB于点H,由于G是△ABC的重心,可知CG:GH=2:1,于是CG:CH=2:3因为DF//AB,所以DF:AB=CD:CB=CG:CH=2:3,所以DF=2/3AB因为DE//AC
解题思路:本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△AB
三角形的关系是设三个边分别为abca^2+b^2>c^2a^2-b^2
(1)由AB:AC=5:3,AB-AC=4厘米条件解出AB=10cm,AC=6cm(2)设AB=5x,则AC=3x.∵AB-AC=4,∴x=2,∴AB=10,AC=6,∴4cm<BC<16cm.
解题思路:通过作辅助线AD⊥BC,可将求△ABC外接圆的半径转化为求Rt△BOD的斜边长.解题过程:解:如图,作AD⊥BC,垂足为D,所以AD==8;设OA=r,OB2=OD2+BD2,即r
在三角形AEC中利用余弦公式求出CE与AC的关系.再根据三角形BEC周长为20,BC=9,即可求出BE长度从而三角形ABC的周长=AC+AB+BC=4BE+BC即可求出!
10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X
如图由余弦定理得:cosB=AB2+BC2−AC22AB•BC=22+(1+3)2−(6)22×2×(1+3)=12,因为B∈(0,π),所以B=π3,故AD=ABsinπ3=2×32=3.故答案为:
解;设(令)AB的中点为E连接点E与点D∵AE=BEDA=DBED=ED∴△AED≌BED∴∠AED=∠BED∴∠AED=90(∵∠AEB=180)∵AB=2ACE为AB中点∴AE=AC∵∠BAD=∠
∵由余弦定理得cosA=9+4−102×3×2,∴cos∠CAB=14,∴AB•AC=3×2×14=32,故选D
不知道你是几年级的.过D点做AB的垂线DE,使E点在AB上∵DA=DB∴∠DAB=∠DBA∵DE⊥AB∴E点为AB中点(等腰三角形中线跟高线是一条线,你们应该学过吧?)又∵AB=2AC∴AE=EB=A
记△ABC中,BC=a,AC=b,AB=c则|AB|^2=|BC|^2+|AC|^2-|BC|*|AC|可写成:c^2=a^2+b^2-ab∵c^2=a^2+b^2-2abcosC∴2cosC=1即c
求什么,说清楚再问:会了谢谢
1.△ABC∽△DEF应该很好判断AB=AC、DE=DF、