在△ABC中,已知角A,角B,角C的度数之比是1比2比3,BC等于4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:56:01
a/cosB=b/cosAa/b=cosB/cosA由正弦定理a/sinA=b/sinB所以a/b=sinA/sinB所以cosB/cosA=sinA/sinBsinAcosA=sinBcosB2si
(b+a+c)(b-a-c)=-3ac,且b²=ac,b^2-(a+c)^2=-3b^4b^2-(a+c)^2=0(2b+a+c)(2b-a-c)=02b-a-c=02b+a+c=0(she
由正弦定理有a/c=sinA/sinC因为(2a-C)/C=tanB/tanC所以2a/c-1=tanB/tanC2sinA/sinC-1=sinBcosC/cosBsinC2sinAcosB-cos
LZ,∠A=60度.\x0d\x0d(tanA-tanB)/(tanA+tanB)=1-2tanB/(tanA+tanB)\x0d(c-b)/c=1-b/c\x0d由已知可得,\x0d2tanB/(t
a=2bccosB有误,应为a=2bcosB证明:利用正弦定理a/sinA=b/sinBA=2B所以a/(2*sinB*cosB)=b/sinB得a=2bcosB
1.cosC=b2+a2-c2=-2√2
tanA/tanB=sinAcosB/sinBcosAc=2RsinCb=2RsinB所以2x2RsinC-2RsinB/2RsinB=2sinC-sinB/sinB所以sinAcosB/sinBco
sinC/sinB=c/b=√3sinc=√3/2即C=60或者C=120°那么A=90°或者A=30°当A=90°时S△ABC=√3/2当A=30°时S△ABC=√3/4
第一个问题:∵(cosA-2cosC)/cosB=(2c-a)/b, ∴结合正弦定理,容易得出:(cosA-2cosC)/cosB=(2sinC-sinA)/sinB,∴sinBcosA-2sinBc
sinA=tanB得sinAcosB=sinB又a/sinA=b/sinB得a/b=sinA/sinB,a=b(1+cosA)得a/b=1+cosA则sinA/sinB=1+cosAsinA=sinB
证明:在BC上取一点E,使得CE=AC因为CD=CD,角ACD=角DCE所以三角形ACD全等于三角形ECD所以AD=DE,角A=角DEC因为角DEC=角B+角BDE,角A=2角B所以角B=角BDE所以
a:sinA=b:sinB,把数据代入,得sinA=二分之根号二,且角A不可能为135度,则角A为45度,角C=180-60-45=75度啦~
1.(b+c-a)tanA=√3bc(b+c-a)/(2bc)=(√3/2)/tanA=(√3/2)cosA/sinA由余弦定理得cosA=(b+c-a)/(2bc)cosA=(√3/2)cosA/s
1、由正弦定理a/sinA=c/sinC,得sinC/sinA=c/a;又由已知sinC=2sinA,得sinC/sinA=2;所以c/a=2;c=2a=2√5;2、由倍角公式sin2A=2sinAc
角C=60度你的问题有问题?1、如果你是(cos(A+B))/2=1-cosC是这样算的:cos(A+B)=2-2cosCcos(180-C)=2-2cosC-cosC=2-2cosC∴cosC=1/
角A+角B+角C=180度其中角A+角B=角C即2倍角C=180度则角C=180度/2=90度三角形ABC是直角三角形
利用正弦定理可得,asinA=bsinB∴sinB=bsinAa=1×323=12∵b<a∴B<A=π3∴B=π6,C=π2故答案为:π2
(1)由a=7,b=3,c=5,知最大角为A,∵cosA=b2+c2−a22bc=32+52−722×3×5=-12,∴∠A=120°;(2)由正弦定理,得sinC=sinAa•c=32×7×5=53