在三角形abc中 d是三角形内的一点,且AD=三分之一AB 二分之一AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:59:01
∵AB=AC ∴△ABC为等腰三角形 ∴∠B=∠C ∵D为BC中点 ∴BD=CD ∵AB=AC∠B=∠C BD=CD ∴△ABD全等于△ACD(SAS) 2. 
证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.
∵△ADB≌△EDB≌△EDC,∴∠ADB=∠EDB=∠EDC,∠DEC=∠DEB∠=A,又∵∠ADB+∠EDB+∠EDC=180°,∠DEB+∠DEC=180°∴∠EDC=60度,∠DEC=90在△
△ABD与△ADC高相同,底边之比为2:1,所以面积之比为2:1所以S△ABC=S△ABD+S△ACD=3S△ACD所以S△ABC=36
延长CE交AB与G∵AE⊥CG,AE平分∠BAC∴△AGE是等腰三角形∴E是GC的中点∵D是CB的中点∴DE//AB∴DE//BF∵EF//BD∴四边形BDEF是平行四边形
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
∵D为BC中点,∴SΔABC=2SΔABD,∵E为AD中点,∴SΔABD=2SΔABE,∴SΔABC=4SΔABE=4.
三角形ABE的面积为1平方厘米解体思路:过E点做与BC边平行的直线,与AB相交与F点,因D为BC的中点,E为AD的中点则有EF=BC/4,EF直线将三角形ABE分割成AFE与FEB两个小三角形.设三角
由垂直可以得到:角1+角A=角2+角A,得到角1=角2,得到三角形ABD相似三角形ACD,得到AD:AE=AB:AC,本身有角A=角A,由定理:两组对应边成比例,并且夹角相等,可得到:三角形ADE相似
证明:∠BAC=90,AB=AC,则:∠ACB=∠ABC=45;∠DAC=∠DCA=15,则:AD=CD;∠BAD=75;∠DCB=30.作出点D关于BC的对称点E,连接DE,BE,CE,则:CE=C
D是BC边上的三等分点,有两种情况,即BD=1/3BC,或BD=2/3BC当BD=1/3BC时,三角形ABD和三角形ABC面积的比=1:3当BD=2/3BC时,三角形ABD和三角形ABC面积的比=2:
证明:根据三角形内角和为180°可得:在三角形CBD中,∠CDB=180°-∠DCB-∠CBD在三角形ABC中,∠A+∠ACD+∠DCB+∠CDB+∠ABD=180°∴∠DCB+∠CBD=180°-∠
用相似比来做,因为D\E是中点,所以DE是中位线,所以DE比BC就是1:2所以三角形ADE面积比三角形ABC面积就是相似比的平方1:4所以ADE面积是2
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.
设三角形的高为h,则S△ABC=S△ABD+S△ACD=(BD*h)/2+(CD*h)/2=(2CD*h)/2+(CD*h)/2=3S△ACD=3x12=36
原来三角形的高为√3a/2画到平面直观图后“高”变成原来的一半且与底面夹角45度然后可以求出此时三角形的高为√3a/4×√2a/2=√6a/8于是面积就是1/2×a×√6a/8=(根号6)a^2/1
(1)延长CE交AB与G∵AE⊥CG,AE平分∠BAC∴△AGE是等腰三角形∴E是GC的中点∵D是CB的中点∴DE//AB∴DE//BF∵EF//BD∴四边形BDEF是平行四边形(2)2BF+AC=A