在三角形abc中,e是内心,延长ae角三角形abc的外接圆于点d试说明de=db
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:43:05
证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.
/>数学辅导团琴生贝努里为你解答
不是有可能是旁心旁心是指三角形外部的一点它同样满足到三角形三边距离相等一个三角形有3个旁心
∠A=a,∠B+∠C=180°-a点O是其内心,OB.OC分别为∠B,∠C的平分线∠OBC+∠OCB=1/2(180°-a)=90°-a/2∠BOC=180°-(∠OBC+∠OCB)=90°+a/2
如图(S1表示S'),S'E=S'F=S'G(S'到三个侧面距离相等)可得出SE=SF=SGS'P=S'Q=S'R  
∠BDE=1/2*(180度-1/2*(∠A+∠B))(1)∠BFE=180度-1/2*(180度-∠BDE)(2)联立(1)(2)可得∠BFE=135度-1/8*(∠A+∠B)∵∠A+∠B135度-
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
内心:到三边的距离相等.三条弦长相等,三条弦到圆心的距离相等,当然圆心就是内心了.
第一个问题:∵A、B、E、C共圆,∴∠BAE=∠ECD.∵I是△ABC的内心,∴∠BAE=∠EAC,∴∠ECD=∠EAC.∵I是△ABC的内心,∴∠ACI=∠DCI.由三角形外角定理,有:∠EIC=∠
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA
因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=
连接I1D,I2D,分别平分△ABD和△ACD的直角,则I1D⊥I2D,连接AI1,AI2,△AI1D∽△CI2D,I1D/I2D=AD/DC,Rt△ACD∽Rt△I1I2D,∠I1I2D=∠C,四边
用不着圆的知识∵∠BAC(即∠A)=68°∴∠ABC+∠ACB=180°-68°=112°∵点I为△ABC的内心∴BI平分∠ABC,CI平分∠ACB∴∠IBC+∠ICB=1/2(∠ABC+∠ACB)=
证明:知道I就是圆心(由三角形外心的定义),则△ABE和△ACB是Rt△,AB⊥BEAC⊥CE而AE是角BAC平分线所以BE=EC,直角三角形ABE,I为AE中点,有AI=BI=EI所以可证得BE=E
角BIC=115度因为三角形的内心是三条角平分线的交点,角A=50度,则角B+角C=130度,他们的一半是65度,所以角BIC=180-65=115度.
内心为角平分线交点∠A=180-2(180-∠BIC)所以∠A=40°
因为I是内心所以BI、CI平分∠ABC、ACB因为角BIC等于130度所以∠IBC+∠ICB=50所以∠ABC+∠ACB=100所以角A的度数为80度
I为三角形ABC的内心,所以I为三角形ABC角平分线的交点,则∠IBC=1/2∠ABC,∠ICB=1/2∠ACB.在三角形BIC中,∠BIC=180°-(∠IBC+∠ICB)=180°-1/2(∠AB
∵OP=xOA+yOB,0≤x≤1,0≤y≤1,∴动点P的轨迹为以OA,OB为邻边的平行四边形ADBO的内部(含边界),∵AC=6,BC=7,cosA=15,BC2=AC2+AB2-2AB×AC×co