在三角形abc中def分别为三边的中点.中线AD与中线EF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:35:19
证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.
用勾股定理△DEF的三边长:√2√53:DE=√(1+1);EF=√(1+2*2)=√5△ABC的三边长:1√103:AB=√(1+3*3)=√10
在一个三角形ABC中,有一个内三角形PDE.AB是底边,点P在AB边上,点D在AC边上,点E在BC边上.在某个特殊的位置上,三角形PDE有一个最小值周长.求:当三角形PDE的周长是最小值时,点P处于A
证明:∵△ABC是等边三角形∴AB=BC=CA,∠A=∠B=∠C=60°∵AD=BE=CF∴AF=BD=CE∴△ADF≌△BED≌△CFE∴DF=ED=FE∴△DEF是等边三角形
ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a
利用等高,求各三角形面积∵D是BC的二等分点∴BD=CD∴S△ABD=1/2S△ABC∵E是AD的三等分点∴DE=2/3AD∴S△BDE=2/3S△ABD∵F是BE的四等分点∴EF=3/4BE∴S△D
/>∵D、E、F分别是AB、BC、AC的中点∴DE=AC/2EF=AB/2DF=BC/2∴三角形ABC的周长与三角形DEF的周长和=3×三角形DEF的周长=18cm∴DEF的周长=6cm
过点D作DG平行于BC∵AB=2BC=1CA=√3∴△ABC是Rt三角形,∠C=90°∴DG⊥AC设正三角形△DEF的边长为x∴∠DFE=60°,DE=DF=x∵∠CFE=α,∠CFE+∠DFE+∠A
∵三角形ABC中,已知点D,E,F分别为AB,AC,BC的中点,S⊿ABC=4厘米²,∴S⊿DEF=S⊿ABC÷4=1
在三角形ABC中'.'D为BC中点.'.三角形ADC为三角形ABC面积的一半'.'E为AD中点.'.三角形CED为三角形ACD面积的一半同理得三角形DEF为三角形ABC面积的1/8=1
在三角形ABC中,因为角A=40°角B=80°,所以角C=60°在三角形DEF中,因为角D=40°角F=60°,所以角E=80°在三角形ABC和三角形DEF中,A=D=40°B=E=80°所以这两个三
因为点F是BE的四等分点所以三角形DEF的面积是三角形BED面积的四分之三所以三角形BED面积=30/四分之三=40平方厘米同理三角形ABD面积=40/三分之二=60平方厘米三角形ABC面积=60/二
S三角形BEF是S三角形BEC的一半S三角形BEC是S三角形ABC的一半即S三角形BEC是S三角形ABC的四分之一S三角形BEF等于4平方厘米
由已知条件可知E的位置有两种情况,F的位置也有两种情况,故△ABC的面积有四种结果,分别是120平方厘米,240平方厘米,360平方厘米,720平方厘米.方法:△DEF与△DEB是同高不同底的关系,由
三角形FHG相似于三角形CEG证明:因为三角形ABC、三角形DEF均为正三角形,则有角F=角FDE=角DEF=角A=角B=角C=60度又因为对顶角角FGH=角CGE根据两角对应相等,则两三角形相似可得
向ABC外侧做等边三角形BCG,连接AG交BC于D,过D引BG的平行线交AB于E,引CG的平行线交AC于F,那么DEF即为所求.
ΔABC中:3²+4²=5²故ΔABC是直角三角形∵ΔABC∽ΔDEF∴ΔDEF也是直角三角形∵6²+8²=10²∴ΔDEF中的另外两边分别
证明:∵AG⊥BC,DH⊥EF∴∠AGB=∠DHE=90∵AB=DE,AG=DH∴△ABG≌△DEH(HL)∴∠B=∠E∵∠BAC=∠EDF∴△ABC≌△DEF(ASA)数学辅导团解答了你的提问,理解
证明:如图过C做CG垂直AB的延长线于G,过F做FH垂直DE的延长线于H∵∠ABC=∠DEF