在三角形abc中已知角abc=90,bd为ac的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:20:58
在三角形ABC中,已知

A=45`a/sinA=c/sinCc=6*根号2

在三角形ABC中,已知c=2a cosB,怎么判断三角形ABC的形状

化为c/a=2cosB又c/a=sinC/sinA所以sinC=2sinAcosB因为A+B+C=180sinC=sin(A+B)=sinAcosB+sinBcosA于是sinAcosB=sinBco

在三角形ABC中,已知b.cosC=c.cosB判断三角形ABC的形状

由正弦定理,b/sinB=c/sinC得b=sinB·c/sinC代入原式得cosC·sinB·c/sinC=c·cosBsinB·cosC=sinC·cosBsinB·cosC-sinC·cosB=

在三角形ABC中,已知cos2A+cos2B-cos2C=1,试判断三角形ABC的形状

cos2A+cos2B=2cos(A+B)cos(A-B)1+cos2C=2(cosC)^2cos(A+B)=-cosC-cosCcos(A-B)=(cosC)^2所以cosC=0或-cos(A-B)

在三角形ABC中,已知2sinAsinB=1+cosC,试判断三角形ABC的形状

2sinAsinB=cos(A-B)-cos(A+B)=cos(A-B)+cosC=1+cosC所以cos(A-B)=1,A=B,三角形ABC是等腰三角形.

已知在三角形abc中,ab=ac,p是三角形abc内一点,且角apb=角apc

证明:把⊿APB绕点A旋转至⊿ADC的位置(如图).则∠ADC=∠APB=∠APC;DC=PB,AD=AP.∴∠ADP=∠APD.∴∠CDP=∠CPD(等式性质)则PC=DC=PB.

已知三角形ABC中,

这道题没有错,因为题中没有说是等边三角形,本题考察的知识点较多,环环相扣,解题过程如下:(1)延长AO交圆于E,则直径AO所对的

1.在三角形ABC中,已知cosAcosB=sinAsinB,则三角形ABC的形状是

1)移项:cosAcosB-sinAsinB=cos(A+B)=0所以A+B=π/2即C=π/2所以为直角三角形2)因为tanB=tanC>1所以90°>B>45°,90°>C>45°所以A

已知,如图,在RT三角形ABC中,角ABC=90,

题目中AO=x,应改为AP=x设OB=OE=OD=R在RT三角形AOD中,AO^2=OD^2+AD^2(1+R)^2=R^2+4R=3/2AO=1+R=5/2AB=AO+BO=4如AP=AD,则x=A

在三角形ABC中,已知a*cosA=b*cosB,试判断三角形ABC形状

正弦定理a/sinA=b/sinB=>a/b=sinA/sinBa*cosA=b*cosB=>a/b=cosB/cosA则cosB/cosA=sinA/sinB即sinAcosA-cosBsinB=0

如图所示,已知在三角形ABC中,AB

AC=AE+CE=8,因为DE垂直平分BC,所以BE=CE所以AE+BE=8ABE周长为AE+BE+AB=14AB=6

在三角形ABC中,已知AB=2,AC=根号8,角ABC=45度,求三角形面积?

作AD垂直BC,因为角ABC为45度,所以,BD=AD=根号2,再根据勾股定理,算出CD=根号6,根据面积公式,S=二分之一乘根号2乘【根号2+根号6】=1+根号3

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

已知三角形ABC中.

如图,∠DBC=(180°-x°)/2=90°-x°/2. ∠DBA=90°+x°/2.同理.∠DCA=90°+y°/2.  x+y+50=180.  

已知,在三角形ABC中,AD平分

由EF垂直平分AD得fa=fd所以,∠fad=∠fda.∠fda=∠bad+∠abd[外角定理]AD平分∠BAC得∠bad=∠dac所以∠bad+∠abd=∠dac+∠cad所以

已知三角形ABC中

因为AB,AC的垂直那个平分线分别交BC与点E,F所以AE=BE,AF=CF(线段垂直平分线上的点到线段的两个端点的距离相等)又因为角BAC=140所以角B加角C等于40所以角BAE加上角CAF等于4

三角形ABC中,已知

tanA+tanB+√3(根号3)=√3tanA*tanB把√3(根号3)移到右边去,提出-√3(根号3)得到tanA+tanB=-√3(根号3)(1-tanA*tanB)把(1-tanA*tanB)

在三角形ABC中,角ABC对应边abc,已知cos(C/2)=√5/3 ,若acosB+bcosA=2,求三角形ABC面

已知cos(C/2)=√5/3cosC=2[cos(C/2)]²-1=2*5/9-1=1/9sinC=√(1-cos²C)=4√5/9由余弦定理acosB+bcosA=a*(a&#