在四面体ABCD中,AB= ,其余各棱长均 为1,由二面角的余弦值为( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:26:56
已知在四面体ABCD中,AB⊥CD,AC⊥BD.求证:AD⊥BC

在四面体内过顶点A作AO⊥底面交底面于O,连结BO、CO、DO并延长,BO交CD于M,CO交BD于N,DO交BC于Q因为AB⊥CD,BO是AB在平面BCD内的射影,所以BM⊥CD同理CN⊥BD,所以O

四面体ABCD中,AB=CD,AC=BD,AD=BC.

如图,补成长方体.设长方体棱长a,b,c则AB²=CD²=a²+b²,AC²=BD²=b&a

在四面体ABCD中,面ABC垂直面ACD,AB垂直BC,AC=AD=2,BC=CD=1,求四面体ABCD的体积

两个面垂直在ABC三角形中作出BE垂直于AC于E则有BE垂直于平面ACDBE=2分之根号3三角形面积ACD=4分之根号15再用体积公式算为8分之根号5要是计算不对见谅我都是口算的跟前没有笔但是算法对着

如图,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大

解析:∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG、EH,∴AB∥FG,AB∥EH.∴FG∥EH.同理可证EF∥GH.∴截面EFGH是平行四边形.设AB=a,CD=b,∠FG

在四面体ABCD中,AB垂直CD,AC垂直BD.求证:AD垂直BC.

作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD

在四面体ABCD中,E,F分别是AC,BD的中点,若CD=2AB=2,EF⊥AB 空间向量

EF=EA+AB+BFEF=EC+CD+DF==》2EF=AB+CD于是:(AB+CD)⊥AB ==》AB *(AB+CD)=AB^2 + AB*CD=0==>AB*CD = -AB^2=-1 设 r

在四面体ABCD中已知AB垂直CD,AC垂直BD求证AD垂直BC,

过B作BE⊥CD交CD于E,过C作CF⊥BD交BD于F,令BE∩CF=O.∵CD⊥AB、CD⊥BE,AB∩BE=B,∴CD⊥平面ABE,又AO在平面ABE内,∴AO⊥CD.∵BD⊥AC、BD⊥CF,A

在空间四面体ABCD中,AB⊥CD,AD⊥BC,求证AC垂直BD

做AO垂直与底面BCD,所以AO垂直于BC,因为有BC垂直与AD,所以BC垂直于平面AOD,所以DO垂直于BC,同理可证BO垂直与CD,那么O就是底面三角形的垂心所以CO垂直与BD,又AO垂直与BD,

如图在四面体ABCD中,BD=√2a,AB=AD=CB=AC=a,

取BC的中点和BD的中点连接一下再将A点与BC的中点相连就可以证明垂直

在四面体ABCD中,AB垂直CD.AD垂直BC.求证AC垂直BD

证明:过A作AO⊥平面BCD于H∴AH⊥CD∵AB⊥CD∴CD⊥平面ABH∴CD⊥BH同理BC⊥AH∴H为△BCD垂心∴CH⊥BD(1)又AH⊥平面BCD∴AH⊥BD(2)由(1)(2)BD⊥平面AC

已知四面体ABCD中,AB=CD=根号13,BC=AD=二倍根号5,BD=AC=5,求四面体ABCD的体积

补成长方体AEBF-GCHD,注意这里的顶点字母之间的对应.设这个长方体的长为a,宽为b,高为c,则a^2+b^2=13,b^2+c^2=20,a^2+c^2=25.解得:a=3,b=2,c=4,∴四

在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1.求四面体ABCD的体积.

作DE垂直于AC并交于E.因AB⊥BC,则DE⊥ABC,为四面体的高.且,AC=2,BC=1,有AB=3^(1/2),S(ABC)=3^(1/2)/2(1)在三角形ACD中,AD=2,DC=1,AC=

已知四面体ABCD中,AB=4,CD=2,AB与CD之间的距离为3,则四面体ABCD提及的最大值为?

1/2*4*2*3*1/3=4再问:能提供一下解法吗?详细一点,谢了再答:可作BE平行CD,且BE=CD,连接CE,则可证ABDE与ABCD的体积一样大,同时AB与CD的公垂线一定垂直面ABE,要使体

在四面体ABCD中,AB=AC=BC=BD=CD=1,当此四面体的全面积取得最大值时,求这个四面体的体积

在三棱锥A-BCD中,BC是变量,另外的五条棱都是定值1,四个面的面积中,三角形ADC,和三角形ADB的面积一定,另外两个三角形是全等的,当∠BAC=∠BDC=90º时,三棱锥的全面积最大,

在如图所示的四面体ABCD中,AB、BC、CD两两互相垂直,且BC=CD=1.

(Ⅰ)证明:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC.(2分)又∵CD⊂平面ACD,∴平面ACD⊥平面ABC.(4分)(Ⅱ)∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD∴AB⊥BD.∴∠CBD是二

在四面体ABCD中,CB=CD,AD垂直BD,且E,F分别是AB,BD的中点,求证:

(1)因为E,F分别是AB,BD的中点所以EF平行AD(中位线性质)而AD在面ACD上所以直线EF//面ACD(2)因为CB=CD,F是中点所以BD垂直CF有BD垂直EF所以BD垂直面EFC又BD在面

在四面体ABCD中,若AB⊥CD,AD⊥BC.求证AC⊥BD

如图,作AO⊥BCD.O∈BCD.DC⊥AO.DC⊥AB.∴DC⊥BAF.(F∈DC).∴DC⊥BF.同理.∵BC⊥AD,∴DE⊥BC.(O∈DE.E∈BC).O为⊿BCD之垂心,CG⊥BD.(O∈C

如图,在四面体ABCD中,BC=AC,AD=BD,E是AB的中点.

证明:(1)∵BC=AC,E为AB的中点,∴AB⊥CE.又∵AD=BD,E为AB的中点∴AB⊥DE.∵DE∩CE=E∴AB⊥平面DCE;(2)取DC的中点H,连AH、EH∵G为△ADC的重心,∴G在A

在四面体ABCD中,AB=BC=CD=DA=AC=BD=2EF分别为ABCD的中点

求EF和AC的坐标当然要先建立空间坐标系才行,然后求出E,F,A,C的坐标即而得所求,求证AB垂直于CD,你不妨连接AF和BF得到三角形ABF,求CD垂直于这么面即可

在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1 求四面体ABCD的体积

作DE垂直于AC并交于E.因AB⊥BC,则DE⊥ABC,为四面体的高.且,AC=2,BC=1,有AB=3^(1/2),S(ABC)=3^(1/2)/2(1)在三角形ACD中,AD=2,DC=1,AC=