在圆○中,△abc为圆○的内接△,ab为1,角c为30度,求圆○中内接四边形面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:54:34
如图,在△ABC中,∠BAC=120°,点P为△ABC内的一点.

因为三角形ABP旋转60度以后得到三角形QDB所以角ABQ=60度,角ABP=角QDB,BP=BD,PA=QD因为角BAC=120度所以角QAB=60度又因为角ABQ=60度所以三角形ABQ是等边三角

一道数学题.如图在圆O的内接三角形ABC中,AB=AC=2倍根号3,且圆心O到C的距离为1,则弦BC的长为?

过0作AC,AB垂线,分别垂足分别为M、N,连接OA,OC,OB,由OA=OC=OB=1,直角三角形AOM斜边为1,一直角边为根号3,可知角OAM=30度,所以角BAC=60度,所以三角形ABC为等边

如图,在一块半径为R的半圆形的铁板中截取一个内接矩形ABCD,使其一边CD落在圆的直径上,问应该怎样截取,能使矩形ABC

设角AOD为凸,AD=Rsin凸,CD=2Rcos凸S=AD*CD=Rsin凸 * 2Rcos凸∵sin(2凸)=2sin凸*cos凸所以S=R²sin(2凸)当

在圆O的内接△ABC中,AD⊥BC,垂足为D.AE是圆O的直径.试探索线段AB、AC、AD、AE之间的数量关系,并写出证

AB*AC=AE*AD.证明如下:连接EB、BA、AC.∵∠ADC=90°(已知),∠ABE=90°(直径所对角),∠E=∠C(圆周角相等),∴△ABE∽△ADC,则AB/AE=AD/AC.所以:AB

如图所示,△ABC内接于圆O,点D在OC的延长线上,sinB

解题思路:利用圆的切线的判定定理求证。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ

在圆O的内接三角形ABC中,AB+AC=12,AD垂直BC,垂足为D,且AD=3,设圆O半径为Y,AB长为X,求Y与X的

作圆的直径AE,连接EC则∠E=∠B,∠ACE=∠ADB=900所以△ACE~△ADB所以AE:AB =AC:AD所以2y:x=(12-x):3所以y=-1/6x^2+2x

已知圆O的半径为R,它的内接△ABC中,2R(sin2A-sin2C)=(根号二a-b)sinB成立,求△ABC面积的最

利用正弦定理求出A,B,C的正弦和a,b,c的关系计出三角形关于正弦的方程,即可求出最在面积.

已知在三棱锥p-ABC中,定点p在底面ABC内的射影为三角形ABC的垂心”

设垂心为G.则PG垂直平面ABC所以PG垂直AB,BC,AC连接AG,BG,CG因为G为三角形ABC垂心,所以AG垂直BC,BG垂直AC,CG垂直AB所以AB垂直平面PCG,BC垂直平面PAG,AC垂

如图所示,在平面直角坐标系中,以O为圆心,以√2的长为半径作圆O交X轴于G、H两点,三角形ABC内接于圆O,且BC‖X轴

连结OB、OC、BM∵BC‖x轴∴DM垂直平分BC∴∠OMB=∠OMC∠BOD=∠COD=1/2∠BOC=∠BAC∴∠BON=∠MAN∴△BON∽△MAN∴∠OBN=∠AMN=∠OMC=∠OMB∴△B

已知等边三角形ABC内接于圆O,点P在弧BC上,则角BPC的度数为多少?

连接AP,∠BPA=∠BCA=60度,∠CPA=∠CBA=60度,∠BPC=∠CPA+∠BPA=120度

已知正三角形abc内接于圆o,四边形defg为圆o的内接正方形(d、e在直径上,f、g在圆上的正方形)S三角形abc=a

设圆半径为r,则内接正三角形ABC的边长等于r√3,高等于3r/2,面积S3=r²3√3/4;一边在直径上的内接正方形DEFG边长为r√(4/5),面积S4=4r²/5;S3/S4

在平面直角坐标系中,三角形abc是圆o的内接三角形

到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.

斜三角形 三角函数以至圆O的半径为R,在它的内接三角形ABC中,有2R(sin平方A-sin平方C)=(根号二再乘以a再

∵2R(sin平方A-sin平方C)=(根号二再乘以a再减b)sinB∴由正旋定理得a^2-c^2=√2ab-b^2∴由余旋定理得cosC=(a^2+b^2-c^2)/2ab=√2/2∴C=π/4,A

如图所示,△ABC内接于圆O,AD为△ABC的高,AM平分∠ABC

证明:(1)延长AO交圆于E,连接BE.∵AE是直径∴角ABE=90°∵∠ABE=∠ADC=90°∠E=∠C∴△ABE∽△ACD∴AB/AE=AD/AC∵AE=2AO∴AB*AC=2AD*AO(2)由

在圆O的内接三角形ABC中,AB+AC=12

连接AO并延长交圆O于点E,连接BE,由上述结论可知AB•AC=AD•AE因为AB+AC=12,AB=x所以AC=12-x所以(12-x)•x=3×2y,所以y与x

在圆O的内接三角形ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设圆O的半径为y,AB为x.…

(1)连接AO并延长交圆O于点E,连接BE,由上述结论可知AB•AC=AD•AE因为AB+AC=12,AB=x所以AC=12-x所以(12-x)•x=3×2y,所以

如图,△ABC内接于○o,ae是圆o的直径,ad是△ABC中BC边上的高,求证:AC·BC=AE·AD

证明:∵∠AEC与∠ABC都是弧AC所对应的圆周角∴∠AEC=∠ABC=∠ABD而AE为直径,∴∠ACE=∠ADB=90°∴△ABD与△AEC相似∴AB/AE=AD/Ac∴AC·BC=AE·AD

已知:等腰△ABC底边BC=8,此等腰三角形的内接于半径为5的圆,则△ABC的面积为______.

连接AO,并延长与BC交于一点D,连接OC,∵BC=8,⊙O的半径为5,AB=AC,∴CD=4,∴AD⊥BC,∴由勾股定理得:OD=3,∴AD=8,∴△ABC的面积为12BC×AD=32,同理当BC在

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B