在正方形ABCD中,M,N,P,Q分别是AB,BC,CD,DA上的点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:49:46
不知道你说的是不是这个图?现在我试着证明做QF垂直BC于F,再做PE垂直AB于E.因为四边形ABCD是正方形,QF垂直BC,PE垂直AB,所以PE=AD=AB==QF,得出:PE=QF,而且PE和QF
分别过点PQ作AB、BC的垂线PE、QF,PE交QF、QN于点G、H,QN交PM于点I.依题意易得PE、QF互相垂直,又因为MP垂直于QN,角PHI=角QHG,所以角EPM=角FQM,又因为PE=QF
分别过点PQ作AB、BC的垂线PE、QF,PE交QF、QN于点G、H,QN交PM于点I.依题意易得PE、QF互相垂直,又因为MP垂直于QN,角PHI=角QHG,所以角EPM=角FQM,又因为PE=QF
相等,因为MP垂直NQ,所以MP,NQ是俩条直线,两点确定一条直线,所以MP在同一直线又分别在上AB.CD所以MP等于BC,NQ等于AB,又ABCD是正方形所以MP等于NQ.
连接MN、AM∵PA⊥平面ABCD,平面PAB经过PA∴平面PAB⊥平面ABCD∵AD⊥PA且AD⊥AB,∴AD⊥平面PAB∵M、N都是中点,∴MN//BC//AB,则MN⊥平面PAB所以DN在平面P
根号2△BEP的面积等于BE*PM/2;△BCP的面积等于BC*PN/2;BE=BC所以△BEC的面积等于BC*(PM+PN)/2;所以PM+PN等于△BEC中BC边上的高,等于BE*sin45°=根
答案:0.7072再问:我要过程再答:可以通过特殊点来计算,将P点与M点或者N点重合,再利用勾股定理。
根据题意可得:阴影部分的面积即是正方形的面积的一半,因为正方形的边长为4,则正方形的面积是16,所以阴影部分的面积是8.故答案为8.
设O=AC∩BD则OM∥=PA/2﹙中位线﹚OM∈平面MBD.A不在平面MBD∴PA∥平面MBD
在AB上选一点Q使BQ=BM易得AQ=CM∵∠AMN=90°易得∠BAM=∠NMP∵CN平分∠DCP易得∠AQM=∠MCN∴△AQM≌△MCN∴AM=MN
证明:在正方形ABCD中,BC=CD,∠ABC=∠BCD=90°BP⊥MC所以∠BPC=∠MPB=90°,∠PBC=∠PMC所以△BPM∽△CPB所以BP/BM=CP/CB又BM=BN,CB=CD所以
因为四边形ABCD是正方形,所以∠B为直角,且BP⊥MC,所以△CBM相似于△CBP所以BM:BC=PB:PC又因为BM=BN所以BN:BC=PB:PC①又因为∠PBN和∠PCD都是∠BCM的余角所以
设正方形ABCD的边长AD=BC=AB=DC=a,DM=x,PB=y,∵四边形ABCD是正方形,∴AD∥BC,∴△MPC∽△MDA,△PNB∽△DNA,∴PMDM=PCAD,PNDN=PBAD,∴3+
⊿ABM绕A逆时针旋转90º,到达⊿ADG,GN=BM+DN=MN ∴⊿ANM≌⊿ANG(SSS)∠NAM=∠NAG, ∠MAG=∠MAD
取一点E使AE=MC证全等就行
题目打漏,是正方形abcd改为正三角形abc ,我只证明⑵.⑴的证明留给楼主照样作.如图,BP是取Q,使⊿NCQ也是正三角形,设AB=a,QC=s,CM=t,则MB=a-t∠Q=∠B=60&
∵线段D1Q与OP互相平分,且MQ=λMN,∴Q∈MN,∴只有当四边形D1PQO是平行四边时,才满足题意,此时有P为A1D1的中点,Q与M重合,或P为C1D1的中点,Q与N重合,此时λ=0或1故选C.
设P在AB上,Q在CD上,M在BC上,N在AD上,且PQ=MN.过A作AE‖PQ交CD于E,过D作DF‖MN交BC于F,∴AE=PQ,DF=MN,得AE=DF,由AD=CD,∴△ADE≌△DCF(H,
因为GC=14BC,所以,S△ACG=14S△ABC=14×12×96×96=1152(cm2).又MN=14AC,所以阴影部分面积为S△GMN=14S△ACG=14×1152=288(cm2),答:
学习一下思路切来的(2012•鸡西)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=