在等擦数列an中,已知a5 a10 a13

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:49:17
在数列{an}中,已知a1=2,a(n+1)=2an/(an+1),证明数列{1/an-1}为等比数列,并求出数列{an

a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-

已知数列{an}中,an=2

∵数列{an}中,an=2n−1(n为正奇数)2n−1(n为正偶数),∴a9=29-1=28=256.S9=21-1+(2×2-1)+23-1+(2×4-1)+25-1+(2×6-1)+27-1+(2

求解一道数列题 已知在数列{an}中,a₁=2,an+₁=an-In(n/n=1),an=?

∵an+₁=an-In[n/(n+1)]∴a(n+1)-an=ln[(n+1)/n]=ln(n+1)-lnnn≥2时,a2-a1=ln2-ln1a3-a2=ln3-ln2a4-a3=ln4

已知在数列an中,Sn=2n^2+3n,求证an是等差数列

an=Sn-Sn-1=4n+1(n>=2),a1=2*1+3=5,满足上式,an通项就是4n+1,即证实等差数列

在数列{an}中已知a1=1,an+1=an+2n-1,求an.

∵an+1=an+2n-1,∴an-an-1=2n-2,∵a1=1,∴a2-1=1;a3-a2=2;a4-a3=22;…;an-an-1=2n-2,∴上面各式相加得,an-1=1+2+22+23+…+

高三数列数列题已知在数列an中,a1=2,(an+1)/an=an+2,n=1,2,3证明数列lg(1+an)是等比数列

a(n+1)=an²+2an1+a(n+1)=(an+1)²取对数得lg[1+a(n+1)]=2lg(1+an),等比,q=2lg(1+an)=lg3*2^(n-1)所以1+an=

在数列{an}中,a1=3,an+1=an+n(n属于自然数),则此数列的通项公式为什么别复制在线等

a(n+1)-an=n则可得an-a(n-1)=n-1a(n-1)-a(n-2)=n-2..a2-a1=1累加得:an-a1=n(n-1)/2所以,an=n(n-1)/2+3=(n²-n+6

在数列an中,已知a1=2,an+1=2an/an +1,令bn=an(an -1).求证bn的前n项和

证:a(n+1)=2an/(an+1)1/a(n+1)=(an+1)/(2an)=(1/2)(1/an)+1/21/a(n+1)-1=(1/2)(1/an)-1/2=(1/2)(1/an-1)[1/a

已知数列{an}中,a1

解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph

已知数列{an}中,a1=56

∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于

已知等差数列{An}的首项为a1,公差为d,数列{Bn}中,bn=3an+4,试判断该数列是否为等

等差数列{An}的首项为a1,公差为dAn=a1+(n-1)dBn=3[a1+(n-1)d]+4Bn=3a1+3(n-1)d+4B(n-1)=3a1+3(n-1-1)d+4=3a1+3(n-2)d+4

在数列{An}中,已知An+A(n+1)=2n (n∈N*)

(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=

已知数列{1/an}为等差数列,且a1a3+a3a5+a5a1=3/5,a1a3a5=1/15,求a3

a1a3+a3a5+a5a1=3/51/a5+1/a1+1/a3=3/5a1a3a51/a5+1/a1+1/a3=9因为{1/an}为等差数列所以1/a1+1/a5=2/a3所以1/a5+1/a1+1

在数列an中已知a1=2/3,an=2an-1/2an-1+1

(1)、a2=2a1/(2a1+1)=(4/3)/(4/3+1)=4/73a=2a2/(2a2+1)=8/15因为a2-a1不等于a3-a2,所以an不是等差数列又因为a2/a1不等于a3/a2,所以

在数列{an}中,已知an+1=an+n,当an+1=2009时,求|a1|的最小值

a(n+1)=an+na(n+1)-an=na2-a1=1a3-a2=2a4-a3=3.an-a(n-1)=n-1叠加得an-a1=1+2+...+(n-1)=n(n-1)/2所以an=a1+n(n-

在数列{an}中,a

∵a1=35,a2=31100∴a2−110a1=14,a2−12a1=1100∵数列{an+1−110an}是公比为12的等比数列,首项为a2−110a1=14∴an+1−110an=14(12)n

已知数列{an}中,a

∵an=nn2+156=1n+156n≤1439∵1n+156n≤1439当且仅当n=239时取等,又由n∈N+,故数列{an}的最大项可能为第12项或第13项又∵当n=12时,a12=12122+1

在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an

sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1

在等不数列{an}中,公比q是整数,a1+a4=18,a2+

解题思路:数列解题过程:因为是等比数列故a1+a4=a1(1+q3)=18(1)a2+a3=a1(q+q2)=12(2)(1)÷(2)得(1+q3)/(q+q2)=18/12化简得2q(