在等边三角形AOB中,将扇形COD按图一摆放

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:32:25
在扇形AOB中,∠AOB=90度,弧AB的长为L,求此扇形内切圆的面积

1.设内切圆的半径r,此扇形半径R=L/(π/2)=2L/π则√2r+r=R,r=(√2-1)R=2(√2-1)L/π此扇形内切圆的面积=πr^2=(12-8√2)L^2/π2.设扇形半径r,弧长C-

如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂

(1)DB=BC/2=1/2,OB=1在直角三角形ODB中勾股定理得OD=√15/2(2)由垂径定理可知,O,E,C,D四点共圆,且∠EOD=45度为定值,所以DE为定长(3)OD=√(4-x^2),

在半径为2的扇形OAB中角AOB等于90度点C是弧上的一个动点不与AB重合OD垂直BC

如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长

如下图,在半径为2的扇形AOB中,角AOB等于90度,点C是弧AB上的一个点,(不与点A,B重合),联结AC,bc,作0

(1)DB=BC/2=1/2,OB=1在直角三角形ODB中勾股定理得OD=√15/2(2)由垂径定理可知,O,E,C,D四点共圆,且∠EOD=45度为定值,所以DE为定长(3)OD=√(4-x^2),

如图,在扇形OAB中,⊙O1分别与AB、OA、OB切于点C、D、E,∠AOB=60°,⊙O的面积为4π,若用此扇形做一个

∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=12∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l)

(2013•邵东县模拟)在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转

(1)∵△AOB是边长为2的等边三角形,∴OA=OB=AB=2,∠AOB=∠BAO=∠OBA=60°,又△DCB是由△AOB绕着点B按顺时针方向旋转得到的,∴△DCB也是边长为2的等边三角形,∴∠OB

在扇形AOB中,角AOB等于九十度,弧AB的长为L,求此扇形的内切圆的面积

设AO、BO、弧度和圆的切点为E,F,G连接内切圆心C和E,F,连接OG则,CE垂直于AO,CF垂直于BO在直角三角形OFC中,角FOC=FCO=45度扇形半径R=2L/π在三角形OCF中,OC=根2

在扇形AOB中,∠AOB=90°,弧AB的长为l,求此扇形内切圆的面积.

设扇形AOB所在圆半径为R,此扇形内切圆的半径为r,如图所示,则有R=r+2r,AB=l=π2•R.由此可得r=2(2−1)lπ=2(2−1)π,则内切圆的面积S=πr2=12−82πl2=12−82

如图,在扇形OAB中,圆O1分别于弧AB,OA,OB切于点C,D,E,∠AOB=60°,圆O1的面积是4π,用这个扇形做

∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=1/2∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l

如图,扇形AOB的半径为5,圆心角=45°,则扇形AOB的面积是,若在扇形AOB内部作一个正方形CDEF,使点C在OA

弧长=45º*π*5/180º=5π/4(2)对照你的图形AOB按逆时针方向:设FB=aDB=aDO=DC=a半径OB=2a=5a=5/2

如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交

连接OD,教CB于点H,OD为半径,所以OD=6.三角形OBC与CBD全等,所以OH=HD=3.在直角三角形中根据勾股定理可得HB=3√3.又三角形CHD与BHD相似,所以根据等比三角形的性质可得CD

扇形AOB中圆心角AOB=60度 半径为2 在弧AB上有一动点P,过P做平行于OB的直线河OA交与点C,设角AOP=a

设半径为r=2,P到OA的距离为h角ACP=角COP+角CPO=角COP+角POB=60所以h=rsinaOC=rcosa-h/tan60所以三角形POC的面积s=OCxh/2=rsina(rcosa

如图,在扇形OAB中,∠AOB=90°,半径=6.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA

周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90

在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA&

周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90

下图中,图(1)是一个扇形AOB,将其作如下划分:

(1)从上至下依次填16,21,5n+1;(2)不能够得到2005个扇形,因为满足5n+1=2005的正整数n不存在.

(2014•十堰)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB

∵OC=4,点C在AB上,CD⊥OA,∴DC=OC2-OD2=16-OD2∴S△OCD=12OD•16-OD2∴S△OCD2=14OD2•(16-OD2)=-14OD4+4OD2=-14(OD2-8)

在扇形OAB中,半径OA为4cm,点C是半径OB的中点,∠AOB=120,求阴影部分的面积.

连结AB∵∠AOB=120°,AO=BO∴容易求得S△AOB=4根号3∵点C是OB中点,∴S△AOC=S△ACB=1/2S△AOB=2根号3又S扇形OAB=8π∴阴影部分面积=S扇形OAB-S△AOC

..在扇形OAB中,半径OA为4cm,点C是半径OB的中点,∠AOB=120,求阴影部分的面积.

过点A作OB的垂线,交BO的延长线于点E∵∠AOB=120°∴∠AOD=60°∵OA=4∴OE=2,AE=2√3∴S△AOC=1/2*2*2√3=2√3∵S扇形OAB=1/3*π*4²=(1