在角abc中,d,e,f分别是边bc,ca,ab的中点,求证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:23:12
已知:如图,在三角形ABC中角ACB=90度,D、E、F分别是AB、AC、BC的中点,求证:四边形CDEF是矩形

D,E分别为AB,AC中点,则DE为三角形中位线,所以DE//BC且DE=1/2BCDE平行等于BC则四边形CDEF为矩形(有一个定理来着)

已知如图在三角形abc中,角acb等于90度,d e f分别是ac ab bc的中点.求证,ce=df

证明:∵AE=EB∠ACB=90∴CE=1/2ABDE是中位线DE=1/2AB∴CE=DE

在三角形ABC和三角形EDF中,D,E,F分别是三角形ABC的三边BC,CA,AB的中点,求三角形DEF相似三角形ABC

证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.

在三角形abc中 点D、E、F分别是AB、BC、AC的中点,求AE、DF互相评分

∵D是AB的中点,F是AC的中点∴DF‖BC设AC交DF于G点∵GF‖EC且F是AC的中点,∴G点是AE的中点∴FG=½EC同理,DG=½BE,又BE=EC,∴&frac1

在△ABC中,已知,点D、E、F分别在边BC、AC、AB上,

△BDF中∠BFD+∠B+∠FDB=180∠FDE+∠EDC+∠FDB=180又因∠FDE=∠B所以∠EDC=∠BFDBD=CE,BF=CD也可得出△BDF与△CDE相似所以∠DEC=∠BDF在由△B

如图.在已知三角形ABC中,角ACB=90°,D、E、F分别是AC、AB、BC的中点,求证:CE=DF

RT三角形ABC中E为斜边AB中点所以CE=AB/2D,F分别为AC,BC中点所以DF//AB,且DF=AB/2所以CE=DF

如图:三角形ABC中 角ACB=90度,点D,E分别是AC AB的中点,点F在BC的延长线上,且

两张一样的,算得很辛苦,请一定要采纳,保证是正确的!

在三角形ABC中,角B等于45度,D,E,F分别是AB,AC,BC的中点,求角FED的度数

45°∵D,E,F分别是AB,AC,BC的中点∴DE//BF,EF//DB∴四边形DBEF是平行四边形所以∠FED=∠B=45°--------------------D,E,F分别是AB,AC,BC

如图所示,在直角三角形ABC中,角ACB=90°,D,E,F分别是AB,AC,BC的中点.求证;EF=CD

证明:连接DE,DF∵D,E,F分别是AB,AC,BC的中点∴DF∥CE ,DE∥CF即CFDE为平行四边形∵∠ACB=90°∴CFDE为矩形所以有EF=CD  (矩形的

如图,在三角形abc中,d,e,f分别是三边中点,则四边形cdef的周长为

de、ef分别是三角形abc的一条中位线,所以de=fa,fe=db.所以cdef的周长=ac+bc.

如图,在△ABC中,AD平分角BAC,DE、DF分别垂直于AB、AC,垂足分别是点E、F.求证点D

要证DE=DF,只需证△AED全等于△AFD.要证RT△AED全等于RT△AFD.现已知AD=AD,∠EAD=∠FAD,故RT△AED全等于RT△AFD,此题得证.证明:∵AD=AD(公共边)∠EAD

如图,在△ABC中,D是AC上一点,E、F分别是AB、BC上的点

延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由

已知如图在△ABC中,D、F、E分别是各边中点,AH是边BC上的高.

E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行

在三角形ABC中,D,E,F分别BC,CA,AB的中点,点M是三角形ABC的重心

如图:1.向量运算的平行四边形法则      2.重心的性质, 1:2可得答案 A

在△ABC中,AH⊥BC于H,D、E、F分别是BC、CA、AB的中点.

证明:如图,∵D、E分别是BC、CA的中点,∴DE=12AB.又∵点F是AB的中点,AH⊥BC,∴FH=12AB,∴DE=HF.

在角ABC中,E,F分别是AB,BC的中点,G,H是AC的三等分点,延长EG,FH相交于点D,说

是证明四边形BCHA是平行四边形吧?证明:取EG的中点O,连BO,BG∵G,F是AC的三等分点,∴F是AG中点,G是FC的中点,∵D,E是AB,BC的中点.∴DF是△ABG的中位线,BG//FH.同理

已知,在RT三角形ABC中,角C等于RT角,点D,E,F分别是AB,BC,CA边上的中点

∵D、E是AB,BC的中点∴DE//FC∵D,F是AB,AC的中点∴DF‖EC所以四边形CEDF是平行四边形又∵角C是直角∴四边形CEDF是矩形