外角平分线bn和cn相交于点n.求∠bnc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:38:40
1,点M应该是三角形ABC的角平分线交点,连接AM,则有AM平分角A.延长AM交BC为点O,那么角BMC=角BMO+角CMO,角BMO=角B/2+角A/2角CMO=角A/2+角C/2,那么可以算出第一
过点C作CO平分角ACB交BP于O所以角ACO=角OCB=1/2角ACB因为CP平分角ACD所以角ACP=1/2角ACD因为角ACD+角ACB=180度所以角ACO+角ACP=角OCP=90度因为角O
估计想求:∠A的度数.设∠C的外角为∠ACE;设∠ABD=∠DBC=X(度),∠ACD=∠ECD=Y(度).∠ACE=∠A+∠ABC,即2Y=∠A+2X,则2X=2Y-∠A.-------------
证明:△ABC是正三角形:AB=BC=AC,∠ABC=∠ACB=60°△ABM和△BCN中:AB=BCBM=CN∠ABM=∠BCN=60°所以:△ABM≌△BCN(边角边)所以:∠BAM=∠CBN=∠
1、∠BEC=40°2、、∠BEC=1/2a这个题其实不难,只要你用心去看题我相信你一定会做的!
∵∠A+∠ABC+ACB=180°∴∠ABC+∠ACB=180°-∠A∵∠ABC+∠CBD=180°∠ACB+∠BCE=180°∴∠ABC+∠ACB+∠CBD+∠BCE=360°即180°-∠A+∠C
设角B为x,C为y.A+x+y=180.因为A=80.所以x+y=100..角BEC=180--(角EBC+角BCE).角EBC=x/2,角BCE=y+(180--y)/2=90+y/2..角BEC=
(1)∠BPC=180°-(12∠EBC+12∠BCF)=180°-12(∠EBC+∠BCF)=180°-12(180°-∠ABC+180°-∠ACB)=180°-12(180°-30°+180°-7
第一步,连接点A和点P.过点P作垂线PL垂直AB,并且交AB的延长线于点L;过点P作垂线PM垂直BC,并且交线BC于点M;同样地,过点P作垂线PN垂直AC,并且交AC的延长线于点N.第二步,由BP是角
因为BP是∠DBC的平分线,所以P点到BD和BC的距离相同同理,因为CP是∠ECB的平分线,所以P点到CE和BC的距离相同所以P点到BD和CE的距离相同,即P点到AD和AE的距离相同所以AP是∠BAC
如图角1=40度,则角2+角3=140度因为角2+角3+角4+角5=360度所以角4+角5=220度由于4角的一半+5角的一半+所求角=180度所以 所求角应为70度.
四边形PGMN是矩形通过4个角均为直角证
http://zhidao.baidu.com/question/318990935.html
;证明:过点P作PD、PE、PF分别垂直于BM、AC、BN由AP平分角MAC可知:PD=PE由CP平分角ACN可知:PE=PF故:PD=PF故:BP平分角ABC
解题思路:利用三角形内角和定理求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include
证明:过点P作PH⊥BC于H,PM⊥AD于M,PN⊥AE于N∵AP平分∠BAC,PM⊥AD,PN⊥AE∴PM=PN∵BP平分∠CBD,PM⊥AD,PH⊥BC∴PM=PH∴PH=PN∴PC平分∠BCE
延长BA,作PN⊥BD于点N,PF⊥BA于点F,PM⊥AC于点M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴
连CP,用三角形角平分线到两边的垂线长相等来做!
(1)55用特殊情况法.假设这是一个等边三角形,那么BP垂直于AC,角APB=角CPB,CAP+BPC=90(2)120为等边三角行得中心,所以OD:AD=1:3又OD=4,所以AD=12