多元回归中若自变量p值显著而方程p值不显著
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:35:56
要看每一个自变量的sig是否小于0.05,只要有一个不满足,则应选择STEPWISE方法,重新计算.
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
int应该是调用regress函数的第二个返回值,也就是对回归系数的区间估计NAN表示不定量,说明regress函数无法对你的回归系数做区间估计,看看你是不是少了什么东西,比如说置信度
联系你了,看能否帮到
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
你说的是哪个p值呢,ANOVA里的p值要小于0.05,才说明方程有效.后面的系数,B值对应的P小于0.05说明该系数比较有效.
p值大于0.05表示回归模型不显著,也就是说你的回归模型不能解释足够多的变异来源想要更多的了解,建议你参照Minitab软件再问:我的二元回归曲线方程中,一个因变量的P值小于0.05,另一个因变量的P
啥意思啊据我对问题的了解做以下回答比较标准化回归系数,值最大的表示影响最大,前提是具有显著性.
你是否要问这些定类和定序变量怎么进行回归分析,是吧是这样的,在统计中,我们不支持将定类的变量用来作回归分析,可以将定序的变量作回归分析,就是用数字1、2、3等等代替就可以了.而在实际中,有些统计学家也
如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.
哪个自变量比较重要吗?看标化系数再问:是标准系数?那回归方程的话最后是用非标准化系数的B还是标准系数呢?谢谢~~~~(>_
简单线性:等式两边都不取对数对数:等式两边都取对数半对数:等式一边取对数显著性检验:单个系数t检验,联合显著性F检验
可以~回归以后再看是否出现自相关、异方差、多重贡献等问题,再修正就行了~再问:我在spss里面用的逐步回归,这个变量进了回归方程,可是和自变量的相关性很低,所以不知道可行不可行!再答:首先逐步回归应用
这句话分两种情况考虑,第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的.第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验
你有没有统计软件,SPSS,eviews都可以很容易得到的用excel也行,点击工具-数据分析(没有的话,先选中加载宏-选中分析工具库,之后就会出现数据分析)-在里面找到“回归”,然后就可以出来啦.
第一次回归的模型要进行模型误设检验,如Link检验或Ramsey检验,如果检验没有通过,则表示存在遗漏变量,这时要加入控制变量.第二次回归的模型要进行多重共线性检验.很有可能你在第二次回归加入的C和D
多重共线性的处理的方法(一)删除不重要的自变量自变量之间存在共线性,说明自变量所提供的信息是重叠的,可以删除不重要的自变量减少重复信息.但从模型中删去自变量时应该注意:从实际经济分析确定为相对不重要并
因为你原来的方程模型肯定是道格拉斯模型.W=C×exp(bE)×exp(cX)×μ为了回归分析,就左右取对数,如此连乘变成连加也就是线性.等到你得出回归值a尖,b尖,c尖,带回原方程就好了.取对数是计
回归分析只是对因变量有要求必须是连续性数值变量自变量可以使分类变量如果分类变量是二分类的则直接纳入回归自变量不需要进行特殊转换如果是超过二分类的自变量需要进行虚拟变量也就是哑变量转换.转换的方式相当于
有什么怎么办的?那结论就是不大了啊,你还要纠结什么?非要把女人说成男人吗?