如图 a b c是圆o上的三点,且有弧AB=弧BC=弧CA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 10:56:36
由于圆周角相等、所以角BDC=角BAC=角ACB=60度所以ABC是个等边三角形所以圆的半径是2倍根号三除以根号三等于2周长等于4π再问:半径是怎么算的?再答:AC取个中点和圆心连上、将圆心连接A、圆
连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=
∵EH与FG交于O面ABD与面CBD交于BD且:EH属于面ABDFG属于面CBD∴O属于BD即BDO共线
A,O,B是同一直线上的三点,即∠AOB=180°∠1:∠2:∠3=1:2:3,可知∠1=30°∠2=60°∠3=90°;∠1:∠2:∠3:∠4=1:2:3:4,∠4=120°,∠5=180°-120
题很简单:除了上述的方法,还可以有一个方法:连接DE.因为AD=AE,CD=BE,所以AC=AB,所以三角形ABC是等腰三角形.另外,因为AD=AE,CD=BE,所以AD:DC=AE:EB.所以DE/
(1)∵弧AB=弧BC=弧CA∴∠ACB=∠BAC=∠ABC则∠ACB=∠BAC=∠ABC=π/3∴AB=BC=CA∴△ABC为等边三角形(2)设圆半径为r,连接AO,延长AO交弧BC于点D,连接BD
如图∵∠APC=∠CPB=60º,∴弧AC=弧BC,∴AC=BC,∠ACB=60º,因此⊿ABC是等边三角形,∴AB=AC;∠BAC=60º,在PC上截取PD=PA,连接
(1)证明:连接OD,如图,∵OB=OD,∴∠ODB=∠OBD,∵∠ABC的平分线交AC于点D,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∵∠C=90°,∴∠ADO=90°,∴OD⊥A
你提的另一个问题:1、如图,在RT△ABC中,角C=90°,点D是AC上一点,过点A,D两点作圆O,使圆心O在AB上,圆O于AB相交于点E,若BD为圆O切线,tan角CBD=3/4,求tan角ABD的
(1)∵点B表示的数是10,AB=18,∴A点表示-8;(2)①设经过t秒红蚂蚁与蓝蚂蚁在C点相遇,∵红蚂蚁的速度是每秒12个单位长度,蓝蚂蚁的速度是每秒10个长度单位,∴c+8=12tc=10t,解
∵∠BDE+∠ADE=90°∠ADC+∠ADE=90°∴∠BDE=∠ADC∵∠DBE=∠CAD(同弧所对的圆周角相等)∴△ACD∽△BED∴AC∶BE=CD∶ED
角A=30度是解题关键(圆周角)延长AC,过D、B作DE垂直于AC,垂足为E,作BF垂直于AC,垂足为F.利用勾股定理和相似形就可解决.先求BF、AF再求CF、BC最后得BD
连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线
如图:∠AOP+∠COD+∠POD=180°(平角为180°)∠CDO+∠COD+∠C=180°(三角形内角和为180°)从而:∠AOP=180°-(∠COD+∠POD)(等量代换)∠CDO=180°
1)连接OB,AB//OC=
由C点做一条直线CD并使CD过圆心O点交圆上于D点再连接DBCD过圆O的圆心故∠DBC为直角.又∠ABC于∠DBC是圆O上共用弧BC上的两角故∠ABC=∠DBC然推出sinA=sinD=BC:DC=3
△ABC是等边三角形因为同一条弧所对的圆周角相等角BPC=BAC=60角APC=ABC=60所以角ACB=60
设半径是x根据直角三角形ado列出勾股方程(x+1)^2=x^2+2^2解得x=1.5这样AB=4,AC=5,CD=CB=3
∵AC是小圆的直径.所以过球心O作小圆的垂线,垂足O’是AC的中点.O’C=32−(322)2=322,AC=32,∴BC=3,即BC=OB=OC.∴∠BOC=π3,则B、C两点的球面距离=π3×3=