如图 cd是圆o的弦ab上的三等分点,m n分别是oc od的中点.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:37:03
1、连接OG∵KE=GE∴∠EGK=∠EKG=∠AKH∵OA=OO,那么∠OAG=∠OGA=∠HAK∵AB⊥AD,那么∠AHK=90°∴∠AKH+∠HAK=90°即∠EGK+∠OGA=90°∴∠OGE
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
证明:在△AEO和△BFO中,∵OA=OB,∴∠OAB=∠OBA.又∵C,D是弧AB三等分点,∴∠AOC=∠BOD.∴△AEO≌△BFO.∴AE=BF.连接AC、BD,则有AC=CD=BD,∵∠AOC
当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s
24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C
(1)证明:连接MO交圆O于N,则MN为直径∵CD是切线,M是切点∴MN⊥CD∵AB//CD∴MN⊥AB∵MN为直径∴MN垂直平分AB【垂径定理】∴AM=MB【垂直平分线上的点到线段两端的距离相等】(
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
证明:连接AD、AC∵AB是圆O的直径,弦CD⊥AB∴AB垂直平分CD∴AC=AD∴∠ACD=∠ADC∵∠ACD、∠AMD所对应圆弧都是劣弧AD∴∠AMD=∠ADC∵∠NMC是圆内接四边形ADCM的外
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
如图,连接OC、OD、BD.∵C、D是以AB为直径的半圆上的三等分点,∴∠BOD=∠COD=60°.CD=BD.又∵OC=OD,∴△OCD是等边三角形,∴∠CDO=60°∴∠CDO=∠BOD,∴CD∥
再问:为什么S△PCD=S△PBO?再答:
证明:连接OA,OB则OA=OB,∠OAB=∠OBA∵AC=BD∴△OAC≌△OBD∴OC=OD,∠OCD=∠ODC∴∠ACM=∠BDN∵M、N是OC,OD的中点∴CM=DN∴△ACM≌△BDN∴AM
通过画图图形中的关系可以发现所求图形面积等于弧CD与圆心O所围成的扇形面积即S=60/360*TT*R的平方=200TT/3注:TT为圆周率π
显然平行,和AB=4没有关系.三角形OCD是等边三角形(以为OC=OD=半径,C,D是三等分点说明角COD是60度),所以角OCD是60度,角COA也是60度,内错角相等所以CD//AB
AC≠CD≠BD,理由如下:如图:连接AC,CD,BD,∵点M、N是⊙O的弦AB的三等分点,∴AM=MN=BN.∵AC>AM,MN=CD,BD>BB,∴AC>CD,BD>CD.∴AC>CD,BD>CD
【∠APC=∠APD】证明:∵AB是⊙O的直径,弦CD⊥AB∴弧AC=弧AD(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)∴∠APC=∠APD(等弧对等角)再问:如图,AB是圆O的弦,以OA为
解题思路:该题考查平几的度量问题,掌握相交弦定理是解题的关键。解题过程:最终答案:见解答
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=