如图 四边形abcd中,角b为90°,ab=3,bc=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:20:34
如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0

(1)∵菱形ABCD,A(0,3),B(-4,0)∴C(-4,-5)∴经过点C的反比例函数的解析式为y=20/x(2)∵菱形ABCD,A(0,3),B(-4,0)∴D(0,-2)∴S△cod=1/2×

如图,在四边形ABCD中,

不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA

如图,在四边形abcd中,角b=90度,ab=bc=4,cd=6,da=2,求四边形abcd的面积

如图;连接AC则由勾股定理求得AC=4√2在△BCD中AC=4√2、CD=6、DA=2所以CD²=AC²+DA²∴∠CAD=90°所以:四边形AB

如图,在四边形ABCD中,角B=90度,AB=BC,AC=BD,把四边形ABCD绕点B顺时针方向旋转90度

∠DBD′=90°.∠ ACC′=45°+45°=90°⊿ABC为等腰直角三角形.

如图,已知四边形ABCD中,角A=角C,角B=角D,求证:四边形ABCD是平行四边形

平行四边形有这么一个判定方法:两组对边分别相等的四边形是平行四边形(百度百科中有)题目已经给出来了,两个对角相等,所以这个四边形为平行四边形

数学几何题:如图,在△ACE中,B为底边AE的中点,四边形BECD为平行四边形,求证:四边形ABCD是矩形

BECD是平行四边形所以CD平行且等于BE,因为B是AE中点所以AB等于BE,所以CD平行且等于AB所以ABCD是平行四边形

如图,四边形ABCD中,AB=BC,角ABC=角CDA=90度,BE垂直于AD于点E,且四边形ABCD的面积为36,则B

过B点作BF⊥CD,与DC的延长线交于F点,则有△BCF≌△BAE(AAS),则BE=BF,S四边形ABCD=S正方形BEDF=8,∴BE=√36=6.再问:那个“钩”是什么意思。。。?再答:根号再问

如图,四边形ABCD中,

∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B

如图在四边形ABCD中AC平分角DAB

证明:∵AC平分∠DAB(1)      ∴∠DAC=∠BAC      &nb

已知,如图,四边形ABCD中,AD不等于BC,AB=CD,角B=角C,求证四边形ABCD是等腰梯形

过点A作AE||CD,交BC于点E∵AE||CD∴∠AEB=∠C∵∠B=∠C∴∠AEB=∠B∴AB=AE∵AB=CD∴AE=CD∴四边形AECD为平行四边形∴AD||EC∴AD||BC∵AB=CD∴四

\(^o^)/~阅读材料:如图2,四边形ABCD中,对角线AC⊥BD,垂足为P.求证:四边形ABCD面积=1/2AC*B

1、由上面的结论AC⊥BD所以面积=AC*BD/2=242、等腰梯形AB=CD角DAB=ADCAD是公共边所以三角形ADB和DAC全等所以角ABP=DCP同理,角BAP=CDP又AB=CD所以三角形A

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)B(-4,0)

C点坐标为:(-4,-5)设经过X点的反比例函数解析式为y=k/x则:-5=-k/4求得k=5/4所以:经过点C的反比例函数的解析式为y=5/(4x)(2)设P点的横坐标为m,则P点到AO的距离为|m

如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A'B'C'D'是边长为1的正方形,

 如图,⑴  E.F是CD,DA的中点,A1D⊥D1D  FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0)

只能用用高中方法OB=4,OA=3∴AB=5sin∠ABO=3/5cos∠ABO=4/5sin∠ABC=sin(∠ABO+90°)=cos∠ABO=4/5cos∠ABC=-3/5tan∠ABC=-4/

如图1,在四边形ABCD中,AB=2,BC=根号5,CD=5,AD=4,角B为直角,求证ABCD是梯形

先说明第1,2题是错的第3题有解第1题.假设1AB平行于CD连AC得AC=3作AF垂直与CD交CD与F点得四边形ABCF为矩形所以AF=BC=根号5所以CF=2故FD=3所以得AF平方加FD的平方等于

如图,在四边形ABCD中,BC

分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB