如图 在rt三角形abc中∠bac=60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:44:01
如图 在rt△abc中 ∠bac=90度,ca=ba,角dac=角dca=15度,求证:ba=bd

如图作DE垂直BC,交BC于F.并延长一倍到E.使DF=EF.连接CE,AE,BEBC是DE垂直平分线,CD=CE,BD=BECAB是等腰直角三角形∠ACB=45°∠DCF=45°-15°=30°;等

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

已知,如图,在RT三角形ABC中,角ABC=90,

题目中AO=x,应改为AP=x设OB=OE=OD=R在RT三角形AOD中,AO^2=OD^2+AD^2(1+R)^2=R^2+4R=3/2AO=1+R=5/2AB=AO+BO=4如AP=AD,则x=A

如图,RT三角形ABC中,

如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4

如图,在Rt三角形ABC中,∠C=90°,AB=5,三角形ABC的周长为12,求三角形ABC的面积

设两条直角边为a,b则:a^2+b^2=25a+b=7所以a^2+b^2+2ab=4925+2ab=492ab=241/2ab=6所以△ABC的面积=6

如图,在Rt三角形ABC中,∠C=90°,动点P从A出发,沿AC,CB,BA的方向运动至点A停止.

从题上来看AC的路程是4,CB的路程是2,BA的路程是2,这不可能是三角形再问:你怎么知道AC的路程是4,CB的路程是2?再答:从A到C是一条直线(面积为0),从第一个图看x轴为路程(0-4)面积为0

如图,在RT三角形ABC中,∠C=90,AC=6cm,BC=8cm,点E,F同时由A,B两点出发,分别沿AC,BA方向向

一、过F点作FG⊥AC;AC=6,BC=8;∠C=90°;可得AB=10;可得:AG/AC=(AB-BF)/AB;即AG=0.6(10-BF);FG/BC=(AB-BF)/AB;即FG=0.8(10-

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

数学如图在RT三角形ABC

过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,在rt三角形abc中∠c=90度 AC=6CM AB=10CM有两个动点P Q分别同时从c点出发 Q沿着CB BA

一、考虑P、Q其中一点到达终点时需要的时间.  由题设,点P的移动速度较快,  ∴当P到达终点时,需要的时间是:(AC+AB)/4=(6+10)/4=4(s).  ∴若存在满足条件的时间t,则有:t≦

已知,如图,在RT三角形ABC中,

求证啥东西?麻烦采纳,谢谢!

在RT三角形ABC中

已知,CM是Rt△ABC斜边上的中线,(题中应该是∠A小于∠B)可得:CM=AM,所以,∠ACM=∠BAC.∠BCD=90°-∠B=∠BAC=∠ACM=∠DCM.因为,∠BCD+∠ACM+∠DCM=9

已知:如图在Rt三角形ABC中, . 帮帮忙 ~

连结AM.因为FD垂直于AB,易得三角形BFD是等腰直角三角形.所以FD=BF.四边形AEDF是平行四边形,这个很容易证吧.我不详细讲了哈.所以,AE=FD=BF.因为M是BC中点,所以角MAC为45

在RT三角形ABC中,

a+b=4ab=2a^2+b^2=(a+b)^2-2ab=12=斜边的平方RT三角形ABC的外接圆的半径就是斜边的一半所以为根号3

如图,在Rt三角形ABC中,角ABC=30度,

△ABF是由△ABC对折的所以角ACB=角F=60度角BAC=角BAF=90度-60度=30度那么△AFC是等边三角形(AB是中线)所以FC=BC=AD同理可证△ACD是等边三角形(ED是中线)BC=

如图,在Rt三角形ABC中,角ABC等于90度,CD垂直于AB,

相等,因为共圆弧对应角相等,即角DFE=角BCD,角BCD=角BAC.再问:是要求相似三角形吗再答:不需要。

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的