如图 在三棱锥p abc中,bc垂直平面pab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:13:22
∵E、F分别是AB、BC的中点,∴EF∥AC,又∵EF⊥DE,∴AC⊥DE,取BD的中点O,连接AO、CO,∵正三棱锥A-BCD,∴AO⊥BD,CO⊥BD,∴BD⊥平面AOC,又AC⊂平面AOC,∴A
第一个问题:取AC的中点为D.∵AB=BC=2√2、AC=4,∴AB^2+BC^2=AC^2,∴由勾股定理的逆定理,有:AB⊥BC.由AB⊥BC、AD=CD,得:BD=AC/2=2.∵PA=PC=AC
证明:取AC的中点D,连接VD,BD∵VA=VC,AD=CD∴VD⊥AC【三线合一】∵AB=BC,AD=CD∴BD⊥AC∵VD∩BD=DVD⊂平面VDBBD⊂平面VDB∴AC⊥
证明:(Ⅰ)∵E,F分别是AC,BC的中点,∴EF∥PB.又EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.(Ⅱ)∵侧棱PA⊥底面ABC,∴PA⊥BC,又由AB⊥BC,PA∩AB=A,∴BC⊥
连接AN,MN//SB(M.N分别是SC.BC的中点)SB⊥SB得SC⊥MNAN是三角形ABC的高AN⊥SC由上所得SC⊥面AMNAS⊥CS(话说SA=?你到是打出来啊!给一半题目让人怎么做?)
(1)AC=BC,AP=BP,PC=PC,所以三角形PCA与PCB全等,又因为PC⊥AC,所以PC⊥BC,PC⊥面ABC,得PC⊥AB.(2)取PA中点D,连结BDCD,所以BD⊥PA,而BC⊥面PA
证明:∵PA⊥面ABC,BC⊂面ABC,∴PA⊥BC∵AC⊥BC,PA∩AC=A∴BC⊥面PAC∵BC⊂面PBC∴面PBC⊥面PAC.
(1)证明:∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,∴BC⊥平面PAB,∵PA⊂平面PAB,∴PA⊥BC;又∵PA⊥PB,PB∩BC=B∴PA⊥平面PBC.…..4(2)
双曲线x/a-y/b=1的斜率大于0的渐近线的方程为:y=(b/a)x(1)则过右焦点(c,0)与渐近线y=(b/a)x垂直的直线方程为:y=-(a/b)(x-
点击放大图片方法一向量方法二几何法
设D,E为AC,AB中点,连接PE,PD,DE因为PA=PB=PC所以PD垂直于AC,PE垂直于AB又因为侧面PAC与底面ABC交于AC所以PD垂直于底面ABC因为AB属于底面ABC所以AB垂直于PD
解题思路:由相关的判定和定理证明,计算。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inclu
再问:有没有了?再答:连接CQ再答:证明MN是三角形PQC的中位线再问:过程。。采纳你再答:中位线平行于底边再答:😂再问:。。。。拜托了再问:你写了拍下来再答:再答:好久没写字了,很烂
过BC作与AD垂直的平面,交AD于E过E作BC的垂线,垂足为F,如图所示:∵BC=2,AD=6,则三棱锥D-ABC体积V=13S△BCE×(AE+DE)=V=13S△BCE×AD=13×12•BC•E
作AC的中点D,连接BD,VD因为VA=VC,AB=BC所以三角形ABC和三角形ACV是等腰三角形所以BD垂直于AC,VD垂直于AC所以AC垂直于三角形BDV所以AC垂直于BV
因为po垂直底面,所以po垂直bc因为ao垂直bc,所以bc垂直ao,op确定的平面所以pa垂直bc
取PC的中点O,连结OA、OB∵∠PAC=90°,∴OA=OP=OC∵∠CBP=90°,∴OB=OP=OC∴OA=OP=OB=OC∴P、A、B、C在同一个球面上
取AC中点M,连接EM、MF.则EM和MF分别是三角形PCA和三角形ABC的中位线.EM平行于PC,且EM=PC/2MF平行于AB,且EM=AB/2因为PC⊥AB,所以EM垂直MF因为PC=AB,所以
取AB的中点D,连结CD、VD∵等腰三角形VAB中,VA=VB=2,D为AB中点∴VD⊥AB同理可得CD⊥AB,可得∠CDV就是二面角V-AB-C的平面角Rt△VAD中,VD=VA2−AD2=1,同理