如图 在四棱锥p abcd中 底面abcd是角dab=60且边长为a的菱形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:57:51
从P向下做辅助线,正好垂直和底面棱形中点相交,设为点O.而且题中所有的三角形为正三角形很好算好O点到各点的距离,再以边角边的中点分别连接O.P,以此计算.
1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.
解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=
解析:根据题意我们可以知道PA⊥PD;而平面PAD⊥平面ABCDPA=PD所以点P在平面ABCD上的射影是AD的中点又因为AD⊥CD所以PA⊥DC既PA⊥面PCD如果取PD中点为F则四边形AMNF为平
证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC
证明:1.连结AC.BD,交于点O,连结MO易知点O是BD的中点又点M是SD的中点,则在△SBD中有:OM//SB因为OM在平面ACM内,SB不在平面ACM内所以由线面平行的判定定理可得:SB//平面
连结AC,则F是正方形ABCD对角线的交点,E、F分别为PC、BD的中点,则EF是△APC的中位线,EF‖AP,AP∈平面APC,∴EF‖平面APD.平面PAD与底面ABCD垂直,四边形ABNCD是正
①.∵PG⊥AD.BG⊥AD.(正三角形,三合一).∴∠PGB为垂直二面角的平面角.∴∠PGB=90°.∵BG⊥AD.BG⊥PG.∴BG⊥平面PAD.(同时,PG⊥平面ABCD,平面PGB⊥平面ABC
第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,
你可以画个草图分析1,连接BD交AC、于F点,再连接EF在三角形PBD中EF卫中位线所以EF平行于PD所以PD平行平面AEC2连接PF因为PA=PC所以三角形PAC为等腰三角形所以PF垂直于ACAC垂
连接BD,OM.在平行四边形ABCD中,O是BD的中点,又因为M是PD的中点,所以,在三角形PBD中,MO//PB,又因为MO在平面ACM内,BP不在平面ACM内,所以PB//平面ACM(因为大部分符
证明:连接BD,交AC于点O,连接EO,∵四边形ABCD为平行四边形∴BO=OD,∵点E是PD的中点,∴E0是△DBP的中位线,∴EO∥BP,又EO⊂平面AEC,BP⊄平面AEC,∴PB∥平面AEC.
(1)∵PA⊥面ABCD∴面ABCD⊥面PADCD⊥AD∴CD⊥PD(2)EF⊥面PCD∴EF⊥PC∵E、F为中点,∴PE=CE∴⊿AEP≌⊿BEC∴PA=BC=a
1,G为AD的中点PAD为正三角且垂直面ABCD可知道PG垂直ABCD即PG⊥GB底面ABCD是∠DAB=60°、边长为a的菱形所以BG⊥AD可知求证BG⊥平面PAD2证明AD⊥PGAD⊥GB那么AD
1、设AC和BD交于O,∵PA⊥平面ABCD,BD∈平面ABCD,∴PA⊥BD,∵四边形ABCD是菱形,∴BD⊥AC,(菱形对角线互相垂直平分),∵AO∩PA=A,∴BD⊥平面PAC,2、PA=AB,
(1)若G为AD的中点,求证:BG⊥平面PAD(3)若E为BC的中点,能否在棱PC上找一点F,使平面DEF⊥平面ABCD?,并证明你的结论
证明:(1)连接AC交BD于点O,连接EO因为:ABCD是正方形所以:AC⊥BD,点O是AC的中点因为:点E是PC的中点所以:EO是三角形APC的中位线所以:EO//AP又因为:EO是平面APC和平面
VAB⊥VBCAB∈VAB =>AB⊥VBC &nbs