如图 将RT△abc绕直角边ob
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:04:25
令斜边上的高为h,则a*b=c*h……①21/a+21/b=1……②√440/c+√440/h=1……③a²+b²=c²……④②式是由KE/BC=AE/ABED/AC=E
(√2)^n等腰直角三角形直角边与斜边的比为1:√2,也就是说,等腰直角三角形斜边是直角边的√2倍.所以第一个三角形的斜边为√2,第二个三角形的直角边也就是第一个三角形的斜边=√2,第二个三角形的斜边
不难算出a1=√2,设an=k,则a(n+1)=√2kan是首项为√2,公比为√2的等比数列所以通项公式an=a1*(√2)^(n-1)=√2*(√2)^(n-1)=(√2)^n=2^(n/2)所以第
(2)面积S可以这样求:S+△APB+△OPQ=√3.△APB的面积=1/2*(√3-T)△OPQ的面积=1/2*(√3-T)*T*(√3/2)因为OP=T,OQ=√3-T就得出S与T的关系了.(3)
∵∠ACB=90°,点A的坐标为(3,√3)∴AC=√3,BC=3∴AB=2√3∴∠ABC=30°,∠BAC=60°∵⊿DEF是⊿DEB翻折所得∴⊿DEF≌⊿DEB∴∠EBD=∠EFD=30°∴∠AE
(1)作图如图所示.A(-2,0),C(1,2);(2)由已知得:点B坐标为(0,-1),点D坐标为(1,0);设过A、B、D三点的二次函数解析式为y=a(x+2)(x-1),将点B(0,-1)代入y
本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,相似三角形的判定与性质,正方形的性质,综合性较强,难度适中.运用数形结合,分类讨论及方程思想是解题的
(1)点A的坐标是(-2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2,∴AC2=CD2+AD2=22+32=13,∴AC=13.
∵OB=4∴B﹙4,0﹚∵COS∠ABC=OB/BC=4/5∴BC=5BC/4=5∵∠BOC=90°∴OC²=BC²-OB²∴OC=3∴C﹙0,-3﹚
根据勾股定理,第1个等腰直角三角形的斜边长是2,第2个等腰直角三角形的斜边长是2=(2)2,第3个等腰直角三角形的斜边长是22=(2)3,第n个等腰直角三角形的斜边长是(2)n.
∵AC+BC+AB=36,AC=12,∴BC+AB=24,于是BC=24-AB.在Rt△ABC中,AB2=AC2+BC2,得AB2=122+(24-AB)2,从而AB=15,BC=24-AB=9.因此
EP=FQ,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG,在△EAP与△ABG中,∠EPA=∠AGB=90°∠PE
∵△FBC与△ECA为等边三角形∴∠FCB=∠ECA=60°,FC=BC,CE=CA∴∠FCB+∠BCA=∠ACE+∠BCA即∠FCA=∠BCE∴△FCA≌△BCE(SAS)∴FA=BE
每个新等腰直角三角形,斜边为直角边的根号2倍,第5个为,根号2的5次方,所以答案为:4倍根号2.
如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体为圆锥,它的主视图为等腰三角形.故选C.
ac=6bc=8勾股得:ab=10则外接圆直径是10,则半径为5,根据公式得s=25π(直角三角形外接圆圆心在斜边中点)
2的(n+1)次方的算术平方根.(根号打不出来)
解析设其中一个边是n另一个边是n+1根据勾股定理9²+n²=(n+1)²81+n²=n²+2n+1∴2n+1=812n=80n=40n+1=41∴周长
(1)解方程x2-7x+12=0,得x1=3,x2=4,∵OA<OB,∴OA=3,OB=4.∴A(0,3),B(4,0).(2)在Rt△AOB中,OA=3,OB=4,∴AB=5,∴AP=t,QB=2t
∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×