如图 直线l1垂直l2 垂足为o,点A,B是直线L1上的两点,且OB=2,AB=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:47:30
过点B作BF∥l1,∵l1∥l2,∴BF∥l1∥l2,∵AB⊥l1,∠1=45°,∴∠OBF=90°,∠FBE=∠1=45°,∴∠2=∠OBF+∠FBE=90°+45°=135°.故答案为:135°.
方程组的两个方程就是两条直线的表达式l1:由两点(-1,0)(2,3)确定y=3/(2+1)(x+1)即y=x+1l2:由两点(0,-1)(2,3)确定y+1=(3+1)/2x即y+1=2x再问:我要
直线L1经过点(2,3)、(0,-1),——》直线方程为:(y-3)/(x-2)=(-1-3)/(0-2),即:2x-y-1=0,直线L2经过点(2,3)、(-1,0),——》直线方程为:(y-3)/
相等因为...我也不知道,反正题都是这样的
(1)双曲线的渐近线方程为y=(b/a)x,y=-(b/a)x由于直线AB垂直于L1,故直线AB的方程为:y=-(a/b)*(x-c)这是因为两条垂直的平面直线其斜率的积是-1.将两条渐近线方程分别与
(1)双曲线的渐近线方程为y=(b/a)x,y=-(b/a)x由于直线AB垂直于L1,故直线AB的方程为:y=-(a/b)*(x-c)这是因为两条垂直的平面直线其斜率的积是-1.将两条渐近线方程分别与
(1)L1斜率为根3,角BAC=60度角OAB=角OBC=120度角OBA=120度-90度=30度角BOA=30度OB为:y=[(根3)/3]*xOB与L1方程联立,得B点坐标(根3,1)代入L2,
连接OA,过点O作OD⊥AB,∵AB=12,∴AD=12AB=12×12=6,∵相邻两条平行线之间的距离均为4,∴OD=8,在Rt△AOD中,∵AD=6,OD=8,∴OA=AD2+OD2=62+82=
设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,π2)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2
√3再问:求过程再答:直线1的斜率为tan30=√3.因为两直线垂直,所以相乘等于-1,最后是-√3,刚才说错了再问:我知道是-√3,我只不过是想对一下答案再答:我靠,你知道还问,没得事安
过点B作BD∥l1,则BD∥l2,∴∠ABD=∠AOF=90°,∠1=∠EBD=43°,∴∠2=∠ABD+∠EBD=133°.故答案为:133.
延长AB角L2与点F∵l1∥l2AB⊥l1∴AB⊥L2∴∠BFE=90°∵∠A=45°∴∠2=90°+45°=135°
①已知A和B的坐标B坐标就是(3,-3/2)就可以得出l2的斜率k已知斜率和直线上任意一点坐标就可以求出l2解析式了③在1中求出l2的情况下通过l1和l2的解析式算出交点C的坐标再用l1算出D的坐标.
过B作直线平行于L1,将角2分为两个角分别为角3角4,角3=90°,角4与角1相等,所以∠2=133°
∠2=90°+30°=120°再问:要过程再答:∵AB⊥L1,∴∠AOF=90°做BD∥L1∴∠ABD=90°∵L1∥L2∴BD∥L2∴∠1=∠DBC=30°∴∠2=∠ABD+∠DBC=90°+30°
哪有图1.因为p关于L1对称点为p2有对称定理得OP1=OP同理可得OP2=OP所以OP1=OP22.设PP1交L1于A,PP2交L2于B有对称性质得角P1OA=角POA角P2OB=角POB又因为角P
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线
过B点做一条平行与l1的直线可得角2=角1+90度=120度,希望采纳.
设实轴长为2a,虚轴长为2b,令角BOF=α,则tanα=b/a△AOB中,∠AOB=2α,∠A=90°OA,AB,OB成等差数列故2AB=OA+OB两边同除以OB:2sin2α=cos2α+1tan
y=x斜率是1所以倾斜角是π/4所以垂直则倾斜角是π/4+π/2=3π/4