如图 过平行四边形abcd对角线ac的中点o作两条互相垂直的直线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:38:34
如图,已知在平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,分别交AD,CB的延长线

∵ABCD是平行四边形∴AD∥BC,OD=OB,OA=OC即DE∥BF∴∠DEO=∠BFO,∠EDO=∠FBO∵OB=OD∴△BOF≌△DOE(AAS)∴OF=OE∵OF=OE,OA=OC∠AOF=∠

如图,已知平行四边形ABCD的对角线相交于点O ,且AD≠CD,过O作OE⊥AC,交AD于点E,若三角形.

O是AC中点,OE⊥AC,∴OE是AC的垂直平分线,EC=EA三角形CDE的周长=CD+DE+EC=CD+DE+EA=CD+DA=10,∴平行四边形ABCD的周长=2×10=20

如图,过平行四边形abcd的对角线ac的中点,o作俩条互相垂直的直线,分别交ab,bc,cd,da于e,f,g,h四点,

四边形EFGH是菱形,理由如下∵ABCD是平行四边形∴AO=CO,AB‖CD,AD‖BC∴∠HAO=∠FCO∠EAO=∠GCO∴△HAO≌△FCO△EAO≌△GCO∴HO=FOEO=GO∵HF⊥EG∴

如图,在平行四边形ABCD中,EF过对角线的交点O,分别交CD,AB于E,F.AB=4,AD=3,

1.3再问:过程再答:BF+CE=AB=4再答:OF=OE再问:再问:你确定?再答:2OF=9.6-BC-(BF+CE)=9-3-4=2.6再答:确定

已知:如图,在平行四边形ABCD中,对角线AC,BD相交于点O,EF,CH过点O,EF分别交

证明:∵平行四边形ABCD∴AO=CO,BO=DO∵AB∥CD∴∠EAO=∠FCO,∠AEO=∠CFO∴△AEO≌△CFO(AAS)∴OE=OF∵AD∥BC∴∠GDO=∠HBO,∠DGO=∠BHO∴△

已知:如图,O为平行四边形ABCD对角线AC的中点,EF、GH过点O,分别交AD、BC、AB、CD于E、F、G、H四点.

证明:因为:点o为平行四边形ABCD对角线AC的中点,即为对称中心且:线段EF、GH分别经过点O,即E、F和G、H分别是一对对称点所以:OE=OF,OG=OH(连接中心对称图形上每一对对称点的线段都经

已知:如图,过平行四边形ABCD的对角线AC、BD的交点O做直线MN,分别交BA、DC的延长线于MN点

证明:∵∠MAO=∠NCO(平行线间的内错角相等)∠AOM=∠CON(对顶角)OA=OC△AOM≌△ZON∴OM=ON又∵OD=OB∠MOD=∠NOB∴△MOD≌△NOB∴∠OMD=∠ONB∴MD‖B

如图,在平行四边形ABCD中,过对角线BD上一点P作EF‖BC,GH‖AB,图中哪两个平行四边形面积相等?为什么?

如图,在平行四边形ABCD中,过对角线BD上一点P作EF‖BC,GH‖AB,图中哪两个平行四边形面积相等?为什么?平行四边形ADFE和平行四边形BCFE面积相等.EF‖BC‖AD,高相等.平行四边形A

如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O作MN⊥BD,分别交AD,BC于点M,N

证明:(以下用---代表推出箭头)四边形ABCD是平行四边形---AD//BC---角MAO=角NCO[1].又四边形ABCD的对角线AC,BD相交于O---AO=OC[2],AC,MN相交于点O--

如图,在平行四边形ABCD中,过对角线的交点O直线交CB,AD的延长线于E和F.求证:BE=DF

证明:∵ABCD是平行四边形,O是对角线的交点∴O平分AC,即AO=OC∴AO/OC=1∵ABCD是平行四边形∴AD∥BC,即AF∥CE∴AF/EC=AO/OC=FO/OE=1∴EC=AF∵ABCD是

已知:如图,在平行四边形ABCD中对角线AC、BD相交于点O,直线EF过点O,分别交AD、BC于

因为四边形ABCD是平行四边形,所以AC和BD互相平分,所以BO=DO,又角EDO=角FBO角BOF=角DOE所以三角形BOF全等于三角形DOE,所以EO=FO.同理可证三角形BOG全等于三角形DOH

如图,平行四边形ABCD 的对角线AC与BD相交于点0,直线EF过点0,且与AB、DC分别相交于点

因为ABCD为平行四边形可得<OBE=<ODFOD=OF因为<BOE与DOF为对角所以<BOE=DOF所以所以△BOE全等于DOF所以OE=OF同理可证OH=OG所以四边形GEHF是平行四边形

如图;已知AC是平行四边形ABCD的一条对角线,

先证明三角形ADN与三角形CBM全等得到DN=BM又有BM⊥AC,DN⊥AC所以DN//BMDN与BM平行且相等,所以是平行四边形

如图,过平行四边形ABCD对角线的交点o作两条互相垂直的直线EF,GH,分别与平行四边形ABCD的四边交于E,F,G,H

E在AD上,F在BC上,G在AB上,H在CD上因为ABCD是平行四边形所以OD=OB,角ODE=角OBE,因为EF与BD相交,所以角BOF=角DOE所以三角形DOE全等于三角形BOF所以OE=OF同理

如图,平行四边形ABCD中,对角线AC=10.∠CAB=30°.求平行四边形ABCD的面积.

AB长为6㎝作AE⊥CD,交CD的延长线于点E∵AC=10,∠CAB=30°∵四边形ABCD是平行四边形∴∠ACD=∠CAB=30°∴AE=5∴S平行四边形ABCD=ABCE=6*5=30cm&sup

如图,平行四边形ABCD中,过对角线BD上一点P作EF平行BC

如图所示,三角形ABD与三角形BCD面积相等,EF//BC,GH//AB,可得三角形HPD与三角形PFD面积相等,三角形EBP与三角形BGP面积相等,由此可得:平行四边形AEPH与平行四边形PGCF面

如图,在平行四边形ABCD中,ac是对角线,则平行四边形ABCD的面积是_____

设DC中点为O∵ABCD是平行四边形∴AO=OC,BO=DO,AD=BC∵BO=1.5,BC=4∴BD=3,AD=4∵AB=5根据勾股定理逆定理可得∠ADB=90°∴S平行四边形ABCD=AD*BD=

如图,在平行四边形ABCD中,过对角线的交点P任作一条直线EF

BE=DF证明连接BD∵ABCD是平行四边形∴BP=DP∠FDP=∠EBP∠DFP=∠BEP∴△FDP≌△EBP(ASA)∴BE=DF