如图(1),Rt△ABC中,∠ACB=90°,CM为AB边上的中线,AN

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:48:00
如图,RT三角形ABC中,

如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4

如图,在Rt△ABC中,∠C=90°.根据题回答

(1)tan角ABC=tan角ADC(2)2tan角ABC=tan角ADC(3)n角ABC=tan角ADC

如图,已知Rt△ABC中.

证明:作AG平分∠BAC,交BD于点G∵∠BAC=90°,AE⊥BD∴∠DAE+∠ADB=ABE+∠ADB=90°∴∠ABG=∠CAF∵△ABC是等腰直角三角形∴AB=AC,∠C=∠BAG=45°∴△

一道纠结的数学题例13.如图在Rt△ABC中,∠A

∵CM是斜边上的中线∴CM=AM=DM=BM若CD是BM的垂直平分线成立则必有CM=BC故当且仅当BC=CM=(1/2)AB时,CD是BM的垂直平分线此时∠A=30°

如图,在RT△ABC中,∠ACB=90°.(1)a=5,c=13,

=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

如图,在Rt△ABC中,∠ABC=90°,CA=3cm,CB=4cm.

(1)设:t秒钟移动了Tcm,cosA=3/5,cosB=4/5PC²=T²+3²-2*3*T*(3/5)=T²-18T/5+9PQ²=(5-T)&s

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

已知如图在RT△ABC中,∠ACB=90°,CA=CB

证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

问题探究:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,为探究Rt△ABC中30°角所对的直角边AC与斜边AB

(1)如图1,作CB的垂直平分线分别交AB、BC于P、D,∴PC=PB,∴∠PCB=∠B=30°.∵∠ACB=90°,∴∠A=60°,∠ACP=60°,∴∠APC=∠A=∠ACP=60°,∴△ACP是

在线求指导:如图,在Rt△ABC中,

(1)证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,,

【二次函数】已知,如图在Rt△ABC中

这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经

∵∠ACB=90°,AC=BC=1,∴AB=2,∴S扇形ABD=30•π(2)2360=π6.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△

如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1

(1)∵CD⊥AB,∴∠BDC=90°,∵∠DCB=30°,∴∠B=60°,在Rt△ACB中,∠ACB=90°,∴tan60°=ACBC=3,又BC=1,则AC=3;(2)在Rt△BDC中,tan∠B

如图,在Rt△ABC中,

(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,

如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=

解题思路:要使D到BC的距离最短。就是过D向CB做垂直于E点。此距离是最短的解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://day

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的

如图,在Rt△ABC中,∠B=90°,BC>AB.

(1)如图;(2)BD=DE;理由:过P作PF⊥BD于F,则四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,∠ADB=