如图(1)等边三角形abc边长为8,ad是角abc的角平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:51:20
C表示的数是:2/3+2/3x3=8/3,又可以读作二又三分之二
是练习册上的吧!C=2πr=2×3.14×1=6.28×1=6.28参考资料:老师讲过了!
延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN
没看到图啊,题目也不完整再问:P是劣弧AC上的一点(动点),AP,BC的延长线交于一点D求(1)圆的半径再答:过A做BC垂线交BC于E则BE=根号3三角形OBE中角OBE=30度,BE=根号3所以半径
∵DE是它的中位线,∴DE=12AB=1,故(1)正确,∴DE∥AB,∴△CDE∽△CAB,故(3)正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故(4)正确,∵等边三角形的高=边长×sin
没图只解第一问因△ABC△CDE为等边△所以△BCD和△ACB中AC=BC,DC=EC又∠ACB=∠ACD=∠DCE=60所以∠BCD=∠ACE=120所以△BCD≌△ACBAE=BD
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
2014当只有一个三角时,边数为3,当有两个时,边数为4,当有三个时,边数为5,当有四个时,边数为6,得出当有N个三角时,边数为N+2,所以,当有2012个这样的三角,边数为2014
连接OA,并作OD⊥AB于D,则∠OAD=30°,OA=2,∴AD=OA•cos30°=3,∴AB=23.故选C.
显然圆的半径=1/tan30=根号3于是面积为3π再问:说仔细点再答:⊙﹏⊙b汗开始比错了是π/3角BAC=60度因为等边三角形角EAB=30度且DE垂直AD(DE为内切圆半径)D为AB中点所以在直角
解题思路:(1)由平移的性质可知BE=2BC=6,DE=AC=3,故可得出BD⊥DE,由∠E=∠ACB=60°可知AC∥DE,故可得出结论;(2)在Rt△BDE中利用勾股定理即可得出BD的长.解题过程
解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
三角形外接圆圆心是三边的垂直平分线交点,所以作其任意两边垂直平分线,这两条垂直平分线交点O,再以点O为圆心,OA为半径作圆,即可得到外接圆.第二问直接用正弦定理即可求解,这应该是初三的题目,我就用初三
过顶点作三角形的垂线,得到两个有一个角为60度的直角三角形.因为是等边三角形所以此垂线也是底边的平分线,因此直角三角形的一条直角边为0.5,斜边为1,可以得出另一条直角边也就是等边三角形的高线为四分之
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
1)见左图∵ AC=BC,CE=CD,∠ACE=∠BCD=60°∴△ACE≌△BCD∴AE=BD 2)见右图,旋转角度后,∠ACE=∠ACB+∠ECE=∠ECE+60°∠BCD=∠
由⊿ABC和⊿DEF都是等边三角形可知⊿ADF≌⊿BED≌⊿CFE,⊿ADF中,AD==x,AF=1-x,∠A=60°,据余弦定理DF²=X²+(1-x)²-2x(1-x
三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3