如图,abcd是正方形,e为bc上一点,将正方形折叠,使a点与点e重合

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:30:57
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

(平面与平面性质)如图,四棱柱ABCD-A1B1C1D1中底面ABCD为正方形侧棱AA1⊥底面ABCD,E是棱BC的中点

连接CD1交C1D于M,连接EM由于E是BC的中点,M是CD1的中点故EM是三角形CBD1的中位线,故有EM∥BD1因为EM在平面C1DE内,BD1在平面C1DE外故有BD1∥平面C1DE

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,已知正方形ABCD的边长是1,E为CD的中点,P为正方形边上的一个动点,动点P从A出发沿A⇒B⇒C⇒E运动,最终到

由题意可知:当动点P从A运动到B时,S△ABE=12×1×1=12,当动点P从B运动到C时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<

(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方形对称性可知,B与D关于直线A

⑴PB+PC最小=DE=√(AE^2+AD^2)=√5⑵PA+PC最小=AC‘=2√3.⑶作P关于OB的对称点P‘,关于OA的对称点P’‘,连接P’P‘’交OA、OB于Q、R,根据对称性得:OP‘=O

如图,ABCD、CEFG是正方形,B、C、E在同一直线上,正方形ABCD的面积为5,正方形CEFG的面积是2

∵正方形ABCD的面积为5∴BC=根号5正方形CEFG的面积是2∴CE=根号2△BDG的面积=(根号5-根号2)×根号5=5-根号10=5-3.162=1.838

如图:E是边长为1的正方形ABCD的对角线BD上一点

把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的面积为10,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

如图①,已知正方形ABCD的边长为4cm.点E是AD的中点:动点P从点E处出发,以1cm|s的速度沿E→A→B→C运动,

1)在AB上,设s=kt+b由题意得:4=2k+b8=8k+b得:k=2/3b=8/3所以解析式就得出了.在BC上时设s1=k1t+b由题意得:0=10k+b,8=8k+b所以函数解析式求出来了.2)

如图,正方形ABCD的边长为6m,点E是AB边上的动点四边形EFGH是正方形,则正方形EFGH面积最小值为

对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=

如图 四边形ABCD为正方形 E是CF上一点 若四边形ABCD是菱形 求∠EBC

∠EBC=15°很高兴为您解答,祝你学习进步!有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!

已知:如图,正方形ABCD的边长是1,E是CD的中点,P为边BC上一个动点,动点P从点B出发,沿B-C-E运动,

由题意可知:当动点P从B运动到C时,S△APE=12×1×1=12,当动点P从C运动到E时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

如图,ABCD为正方形,E是BC的中点,三角形ECF与三角形ADF面积一样大,那么三角形的AEF的面积与正方形ABCD

你是问比值吧设正方形总面积为4,则边长为2.设cf=x,df=1-xx/2=2(1-x)/2x=2-2xx=2/34-2*1/2-2/3*1/2*2=7/34:7/3=12:7比值为12:7