如图,ab为圆o直径,oc垂直ab,弦cd与半径ob相交于f

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:41:38
如图,在圆O中,半径OC垂直于AB直径,OE=OF,求证BG=CF

是不是应该求BE=CF啊?BG绝对不会=CF的,BE=CF用全等三角形就好了

已知如图,AB 为圆O的直径,半径 OC垂直于 AB,E为OB上的一点,弦AD垂直于CE交OC于点F,求证:OE=OF.

证明:∵OC⊥AB∴∠COA=∠COB=90∴∠OCE+∠AEC=90∵AD⊥CE∴∠BAD+∠AEC=90∴∠BAD=∠OCE∵OA=OC∴△AOF≌△COE(ASA)∴OE=OF

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图,AB为圆的直径,OC垂直AB,垂足为O,点E、F、G在圆O上,分别作GM垂直OA,GN垂直OC,EH垂直OC,EK

矩形的对角线相等:连接OB、OE、OF,那MN=OB,HK=OE,PQ=OF,∵OB=OE=OF,∴MN=HK=PQ.

如图 ,AB为圆O的直径,CD是弦,且AB垂直CD于E.连接AC、OC、BC.求证:角ACO=角BCD

证明:因为OA=OC所以∠ACO=∠A因为AB为圆O的直径,CD是弦,且AB垂直CD于E所以弧BC=弧BD所以∠A=∠BCD(等弧所对的圆周角相等)所以∠ACO=∠BCD供参考!JSWYC

如图,AB是圆O的直径,以OA为直径的圆O1与圆O的弦AC相交于点D,DE垂直于OC,垂足为E.

证明:DE是O1切线因为OA=OC所以<A=<C因为O1A=O1D所以<A=<O1DA所以<O1DA=<C所以O1D平行OC所以<ODE=<CED=90度所以DE为O1切线

如图,圆O的直径CD=10cm,AB是圆O的弦,AB垂直CD,垂足为M.若OM:OC=3:5,求AB的长

8cmm在直径CD上,O为CD中点,OM:OC=3:5所以OM=3OA为半径=5三角形OAM为直角三角形,所以AM=4,同理BM=4,AB=8再问:过程怎么写?再答:画个图,把直角标出来再问:怎么画呢

如图,AB是圆O的直径,BC垂直于AB,B为垂足,D是圆O上一点,且AD平行于OC,求证:CD是圆O的切线

连接OD因为OA=OD,所以角OAD=角ODA,因为ad//oc,所以角ado=角doc因为角dob=OAD+ODA所以角cob=角cod证三角形全等得直角

如图,已知圆O的直径AB=8,半径OC垂直AB,且OC是O1的直径,圆O2分别与圆O外切,与圆O1外切,与AB相切.

郭敦顒回答:(1)∵AB是⊙O的直径,半径OC⊥AB,且OC是⊙O₁的直径,∴⊙O₁与AB相切于O,⊙O₁与⊙O相切于C.(2)∵AB=8,⊙O₂分别与

如图,已知圆O的直径AB=8,半径OC垂直AB,且OC是O1的直径,圆O2分别与圆O内切,与圆O1外切,与AB相切.

易知R=4,r1=2令圆O2半径为r2连接OO2、O1O2过O2作O2D⊥OC,交OC于D依题并由勾股定理有:(r1+r2)^2-(r1-r2)^2=(R-r2)^2-r2^2解得r2=1

如图,AB为圆O的直径,半径OC垂直于AB,点E、F是弧AB的三等份点,DE平行AB,(1)求证:点D是OC的中点;(2

点E,F是弧AB的三等分点,所以有∠EOD=60°,又ED‖AB,CO⊥AB,所以∠EDO=90°,所以OD=1/2OE=1/2OC,所以D为OC中点.(2)最小值为√2OA

如图,已知圆O的半径为r,弦AB垂直平分半径OC,则弦AB长为

勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图AB为圆O的直径C D为圆O上的点 OC垂直于AD CF垂直DB

∵AB是直径∴∠ADB=∠MDF=90°∵CM⊥AD,CF⊥DB(DF)即∠CFD=∠CMD=90°∴四边形CMDF是矩形∴DM=CF∠MCF=90°即CF是圆切线∴根据切割线定理:CF²=

如图,已知AB为⊙O的直径,半径OC⊥AB,弦DE垂直平分OC于F,试求∠CBD的度数

连接OD,DF⊥OF,2×OF=OC=OD,所以∠DOF=60°,因为OC⊥AB所以∠DOA=30°,因为△DOB为等腰三角形,∠DOA为外角,等于∠ODB+∠OBD,所以∠DBA=15°,因为∠CB

如图,在圆O中,半径OC垂直于直径AB,E,F分别在OA,OC上,且OE=OF,求证:CE⊥BF

证明:延长BF交CE于H∵OC⊥AB∴∠COA=∠COB=90∴∠ECO+∠CEO=90∵OC=OB、OE=OF∴△CEO≌△BFO(SAS)∴∠FBO=∠ECO∴∠CHB=∠FBO+∠CEO=∠EC

如图,大圆O的半径是小圆O1的直径,且OC垂直于圆O的直径AB,圆O1的切线AD交OC的延长线于点E,切点为D.已知圆O

如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A

如图,AB为圆的直径,OC垂直AB,垂足为O,点E、F、G在圆O上,分别作GM垂直OA,GN垂直OC,EH垂直OC,

连接OG,OE,OF,根据长方形的对角线相等证明都等于圆的半径,所以都相等