如图,ab是圆o的直径,bc交圆o于点D,DE⊥AC于点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:36:16
如图,AB是圆心O的直径,BC是弦,OD⊥BC于E,交BC于D

OD平分BC即BE=CE弧CD=弧BD三角形ABC为直角三角形OE平分弧BC

如图,AB是圆O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点N,交BC的延

证明:连接OC由题意得△ABC为直角三角形,∠ABC=60°易得∠AOC=120°又在△EMB中,因为EM⊥AB,即∠EMB=90°,所以∠ECF=∠E=30°,∠CFM=60°因为四边形内角和为36

如图,ab是圆o的直径,d是弧bc的中点,ac,bd的延长线交于点e,求证ae=ab

证明:连接AD∵AB是圆O的直径∴∠ADB=90°=∠ADE∵D是弧BC的中点∴弧BD=弧CD∴∠CAD=∠BAD∵AD=AD∴△AED≌△ABD∴AE=AB再问:d点是be的中点吗、辅助线是怎么做的

如图,AB是圆o的直径,E是弧BC的中点,OE交弦BC于点D,以知BC=8,DE=2,求圆o的半径的长

取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图,AB是圆O的直径,CB是圆O的弦,D是弧AC的中点,过D点作直线与BC垂直,交BC延长线于E点,且BA交延长线于F

1)因为D是圆弧AC的中点,所以AC垂直于DO;因为AB是直径,且C是圆上一点,所以三角形ACB是直角三角形,角ACB=90°,所以AC垂直于BC;所以DO//BC;因为DE垂直于BC,所以DE垂直于

如图,等腰三角形ABC的腰AB 为直径画半圆O,交AC于E,交BC于D ,求证D是BC的中点

连AD,因∠ADB=90°(直径所对的圆周角=90°,即AD⊥BC,故D为等腰三角形BC的中点

如图 AB是圆o的直径,AC为弦,OD‖BC,交AC于点D,

OD‖BC  →△AOD∽△ABC  →OD/BC=AO/AB=1:2       &nb

如图,AB是圆o的直径,BC是弦,直径DE与弦BC交与F,若弧AD=弧CE,试判断DE与BC的位置关系,并说明理由

连接OC,则有:OB=OC.已知,弧AD=弧CE,可得:∠AOD=∠COE;所以,∠BOE=∠AOD=∠COE;即有:OE是等腰△OBC顶角∠BOC的平分线,所以,OE垂直平分BC,即:DE垂直平分B

如图,AB是⊙O的直径,BC是弦,OD垂直BC于E,交BC弧于D

很简单(1)四个结论:1、AC平行OD2、角ACD=90度3、BD=DC4、角AOC等于两倍的角ABC(2)因为AC平行OD且O为AB中点,所以D为BC中点(中位线),所以BD=CD=4,设半径长为x

如图,AB是圆O的直径,BC是圆O的切线,切点为B,D是圆O上一点,CD=CB,连接AD.OC.OC交圆O于E,交BD于

(1)三角形OBC全等于三角形ODC(SSS)角CDO=角CBO=90度所CD是圆O的切线(2)由结论(1)知OBCD四点共圆角ABD=角DCO=1/2角BCD所以角BCD=2角ABD(3)OBCD四

几何——圆已知如图,AB是圆O的直径,AB=AC,BC交圆O于点D,延长CA交圆O于点F,连接DF,DE⊥CF于点E(1

1、AB=AC连接OD∵OB=OD∠ABD=∠BDO=∠BCF∴OD//CF∵DE⊥CF∠ODE=90°∴DE切圆2、∵△DEF≌△CDE∴EF=CE=4/5×CD=4/5×BD=4/5×4/5×AB

如图,AB是圆O的直径,C为圆O上一点,BC交圆O于点D,EF切圆O于D且DE⊥AC于E求证 AB等于AC

楼主你是不是仪中的啊再问:是啊怎么了再答:metoo,我也不会做再问:啊哈啊哈啊哈额。。。。。。。。。。。再答:楼主你QQ可以告诉我吗,我的是860171926再问:为什么和你很熟吗再答:跟你对下试卷

如图,AB是圆O的直径,BC是弦,OD⊥BC于点E,交弧BC于点D

取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R

如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.

设⊙O的半径为x,因为OD⊥BC于E,所以BE=CE=BC/2=4又OE=OD-DE=x-2.在Rt△OEB中,OE^+BE^=OB^,即:(x-2)^+4^=x^,化简得:-4x+20=0,解得:x

如图,AB是圆O的直径,BC是圆O的切线,OC于圆O相交于点D,连接AD兵延长交BC一点E,取BE的中点F,连接DF.

(1)因为BC是圆的切线所以三角形OBC是直角三角形设原半径为r那么(r+CD)^2=r^2+BC^2r^2+2r+1=r^2+3得r=1即圆O的半径为1(2)由(1)得知角DOB=60度所以角DAB