如图,AB是圆O的直径,弦DE垂直平分OA于点C,弦DF交AB于点P,且
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:32:49
∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C
设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3
当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s
证明:连接OD∵OD=OA∴∠ODA=∠A∵EC=ED∴∠EDC=∠ECD=∠ACF∵EF⊥AB∴∠A+∠ACF=90°∴∠ADO+∠CDE=90°即OD⊥DE∴DE是圆O的切线
连接OD,则OD=OC=DE∴角E=∠DOE=18°所以,∠ODC=∠OCD=36°(∠ODC是外角)∴∠AOC=72°(同上)
60度再问:求过程!再答:好吧!稍等再答:因为CO=DO,所以
连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C
连接OE因为OD=1/2OC=1/2OE所以角DOE=60°则角AOE=30°圆心角的比等于所对应的弧度的比就是这样,明白没?
∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.
1、添加辅助线BD∵∠ACD=60° ∴∠AOC=60°(有一个角是60°的等腰三角形是等边三角形) ∴∠BOD=60°(对顶角相等)在直角三角形中∠MDO=30°∴线段OM=1/
AB‖ED弧BD=(180°-40°)/2=70°∠BOC=180°-70=110°
连接OC,则有:OB=OC.已知,弧AD=弧CE,可得:∠AOD=∠COE;所以,∠BOE=∠AOD=∠COE;即有:OE是等腰△OBC顶角∠BOC的平分线,所以,OE垂直平分BC,即:DE垂直平分B
(1)连接OE、OF,∠AOE=∠EOF=∠FOC,(同弧所对的圆心角相等)在△OED中,∠EOD=60°,∠EDO=90°,∵∠OED=30°.在直角直角形中,30°所对的直角边=斜边的一半.∵OD
右图,显然CE假如重合,那么MD也就重合了.所以,只有在左上图,ADC是正三角形,角BAC为30度的时候,才会出现CE重合的现象.再问:挺有道理的诶~!我也想过这种情况,但是不确定题目是让我补充条件还
(1)证明:连接BC、ODAB为直径,则∠ACB=90,BC⊥ACDE⊥AC,∴DE‖BCD是弧BC中点,根据垂径定理,OD⊥BC.∴OD⊥DEDE是圆的切线(2)连接AD.∠CDE为弦切角,∠DAE
图都没有,汗~~~~~~~~~~~~~幸亏自己画了幅证明:连接BE,OB,OC,OD.作OJ⊥CD于k,垂直BE于G点那么易证角BOJ=角EOJ,角COJ=角DOJso角COB=角DOE &
小德德呢:证明:ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC∵AB是⊙O的直径,且AB⊥DE∴弧AD=弧AE∵点D是优弧ABC的中点∴弧AD=弧DBC∴弧AE=弧DBC∴弧AC
过D作DF⊥BF交BC的延长线于F∵四边形ABCD是园O内接四边形∴∠DAB+∠DCB=180°∵∠DCF+∠DCB=180°∴∠DAB=∠DCF∵DE⊥AB,DF⊥BF∴∠DEB+∠DFB=90°∴
证:连接OC∵AC‖DE∴∠BOE=∠OAC,∠OCA=∠COE∵OA=OC∴∠OAC=∠OCA∴∠BOE=∠COE∴弧BE=弧CE
ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC∵AB是⊙O的直径,且AB⊥DE∴弧AD=弧AE∵点D是优弧ABC的中点∴弧AD=弧DBC∴弧