如图,AB是圆O直径,点E在圆O上,点C为弧BE的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:19:57
(1)因为角C=角P角1=角C所以角1=角P所以CB\\PD(2)=47\15再问:第1问没错第2问我同学说答案是5再答:连AC,∵AB为圆O的直径,所以∠ACB=90°又∵CD⊥AB,∴BC弧=BD
1、连接OG∵KE=GE∴∠EGK=∠EKG=∠AKH∵OA=OO,那么∠OAG=∠OGA=∠HAK∵AB⊥AD,那么∠AHK=90°∴∠AKH+∠HAK=90°即∠EGK+∠OGA=90°∴∠OGE
证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以
设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°
所以角ABC=90度\x0d因为AB为圆O的直径\x0d所以角APB=角BPC=90度因为OP=OB所以角OPB=角ABP\x0d因为角BPC=90度,CE=BE所以PE=BE所以角BPE=角PBC\
拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径.此题可用第二种方法解决,即:证明DE⊥OD.证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
2、CE=EB=4,OE=R-ED=R-2OB^2=OE^2+EB^2R^2=(R-2)^2+4^2R=5
连接BC,∵AB是直径,∴BC⊥AE,∵DE=DB,∴DC=DB=1/2BE(直角三角形斜边上中结等线斜边的一半),连接OD、OC,∵OD是切线,∴∠OCD=90°,∵OD=OC,OC=OB,∴ΔOD
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠
连接OC,则OB=OC∴∠OBC=∠OCB∵∠EAC=∠D=60°∴∠ABC=60°∴∠OBC=∠OCB=∠BOC=60°,∠AOC=120°∴BC=OB=OC∵BC=4∴OB=4∴AB=8∴⌒AC=
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
ea是切线,ab是直径,所以角eab,acb都是90度,角abc是30度,bc=4由三角关系半径是4角aoc120度是圆周长的三分之一所以劣弧长为三分之八π
这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定
切线CD方=CB*CA由于CB=AB,所以AB=6;直径MF⊥AB于点E,且E为OF中点可知角AOB=120°,所以半径r=2根号3