如图,AD.AF分别是钝角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:32:00
现在的初中生比我们牛多了再问:你会不再答:很简单啊连接AC因为(AB=AD)AC=AC(角D=角B=90度)所以三角形ADC=三角形ABC-———→DC=BC所以(DF=BE)→→所以三角形ADF=三
看图:--------------------------------------------------------希望可以帮到你!如对回答满意,--------------------------
连接AC后证明三角形全等再问:我本来也是这么想的,能不能吧过程写下,我多给分再答:AB=ADAC是公共边,∠B=∠D=90°所以利用勾股定理可以证明CB=CD然后可得△ACB≡△ACD然后得出CB=C
(1)由DE=CF及正方形的性质,得出AE=DF,AB=AD,∠BAE=∠ADF=90°,证明△ABE≌△DAF,得出∠ABE=∠DAF,而∠ABE+∠AEB=90°,利用互余关系得出∠AOE=90°
提示连接bndm证明三角形bnc与三角形dmc全等.就可以得到结果了.
因为在直角三角形ABC中,AB=AC所以∠ABC=∠ACB=45°因为AD⊥BC,AB=AC所以AD平分角BAC所以∠BAF=45°所以∠BAF=∠ACE因为AF=CE,BA=AC所以△BAF≌△AC
AD=BCAD=DFAD=EC证明:因为四边形ABCD是平行四边形所以AD=BC因为AD//BC所以∠EFA=∠FAB又AF是∠DAB的角平分线所以∠DAF=∠FAB所以∠EFA=∠DAF所以AD=D
证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴
解题思路:解析:利用三角形全等,证明△ABE和△DAF全等可求。解题过程:如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE求AF=BE。解析:最终答案:
:连接EF,在平行四边形ABCD中,AD=BC,AD‖BC,∵AF=BE,∴DF=EC,∴四边形ABEF和ECDF都是平行四边形,∴EG=AG,EH=HD,∴GH是ΔEAD的中位线,∴GH‖BC,GH
应该是:AF是∠DAE的平分线证明:∵AD是△ABC的高∴∠B+∠BAD=∠B+∠C=90°∴∠BAD=∠C∵AE是中线∴AE=CE∴∠CAE=∠C∴∠BAD=∠CAE∵AF是角平分线∴∠BAF=∠C
因为AE:AB=AO:AC所以△AEO∽△ABC同理△AOF∽△ACD所以EO:BC=FO:CD=AE:AB=AF:AD=1:4所以四边形AEOF和四边形ABCD相似四边形AEOF与四边形ABCD周长
∵AF=CE∴AE=AC-CE=AC-AF=CF又AD=CB∴Rt△ADE≌Rt△CBF∠DAE=∠BCF∴AD∥BC又AD=BC∴四边形ABCD是平行四边形
因为AD=AF,AC=AE,角ADC=角AFE=90所以RT三角形ADC全等于三角形AFE所以DC=FE又因为在三角形ABD和三角形ABF中AB=AB,AF=AD,角AFB=角ADB所以三角形ABD和
∵AF=CE∴AE=AC-CE=AC-AF=CF又AD=CB∴Rt△ADE≌Rt△CBF∠DAE=∠BCF∴AD∥BC又AD=BC∴四边形ABCD是平行四边形
△DEF为等边三角形证明:∵三角形ABC为等边三角形∴AB=AC=BC,∠C=∠B=∠A又∵AD=BE=CF∴AF=CE=BD在△ADF和△FCE和△BED中AF=CE=BD∠C=∠B=∠AAD=BE
证明:∵四边形ABCD是正方形∴AB=AD=CD,∠BAE=∠D=90°∴∠ABE+∠AEB=90°∵AF⊥BE∴∠DAF+∠AEB=90°∴∠ABE=∠DAF∴△ABE≌△DAF(ASA)∴AE=D
1、作辅助线,连接BD;2、因AB=AD,BC=DC,所以角ADB=角ABD,角CDB=角VBD;两角相加,角ADC=角ABC;3、因BC=DC,E\F是中点,所以DE=BF;4、因AB=AD,DE=
连接AF,EC.有题可知AE=FC,又因为AE//FC,所以四边形AECF为平行四边形,所以AF=EC(平行四边形的对边长相等)
证明:∵四边形ABCD是平行四边形,E、F分别是AE、DC的中点,∴AD=BA、DF=AE、∠ADF=∠BAE=90°,∴△ADF全等△BAE,∠EBA=∠FAD、∠AEB=∠DFA,∠FAD+∠AF