如图,AD是△ABC的中线,ED,DF分别平分∠ADB,∠ADC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:27:55
如图,AD是三角形ABC的中线,求证

证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(

如图,已知AD是△ABC的中线

果然是缺了BC的长度这个条件啊.过D向BE做高由于翻折,易得角CDE=角BDE=90度,且DE=DC.又DC=BD,因此DE=BD,即三角形BDE是等腰RT三角形.由此易得BE平行于AD,所以四边形B

如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.

证明:∵AD是△ABC中BC边上的中线,∴BD=CD.∵CE⊥AD于E,BF⊥AD,∴∠BFD=∠CED.在△BFD和△CED中∠F=∠CED∠BDF=∠CDEBD=CD,∴△BFD≌△CED(AAS

已知:如图,AD是△ABC的中线,E是AD的中点,延长CE交AB于点F.求证:AF=1/2BF

证明:过D作DM‖AF,交CE于M在△DME和△AFE中,∠DEM=∠AEF,DE=AE,∠FAE=∠MDE∴△DME≌△AFE,AF=DM;∵AD是△ABC的中线∴D是BC的中点,DM=1/2BF∴

已知:如图AD是△ABC的中线,E是AD的中点,延长CE交AB于点F.求证:AF=二分之一BF

过点D作DG//CF交AB于点G在△BFC中,∵GD//CF,BD=DC,所以GD是△BFC的中位线,所以BG=GF,同理,FE是△AGD的中位线,所以AF=FG,所以AF=FG=BG=1/2BF

已知:如图AD是△ABC的中线,E是AD的中点,延长CE交AB于点F.求证:AF=1/2BF

过D作DG‖BF,交CF于G∵BD=DC,DG‖BF∴DG是三角形BFC的中位线,DG=1/2BF∵DG‖AF,AE=ED∴△AEF≌△DEG∴AF=DG∴AF=1/2BF

已知:如图,AD是直角三角形ABC斜边上的中线,AE⊥AD交CB的延长线于点E.求证:△BAE∽△ACE

AD是直角三角形ABC斜边上的中线所以AD=BC/2=DC所以∠C=∠CAD因为∠EAB+∠BAD=90度∠BAD+∠CAD=90度所以∠EAB=∠CAD=∠C△BAE和△ACE都有∠E所以△BAE∽

已知:如图,AD是直角三角形ABC斜边上的中线,AE⊥AD交CB的延长线于点E.求证△BAE∽△ACE

∵BD=CD,∠BAC=90°∴BD=CD=AD∴∠C=∠CAD∵∠EAB+∠BAD=90°,∠CAD+∠BAD=90°∴∠EAB=∠CAD在⊿BAE,⊿ACE中∵∠EAB=∠C,∠E=∠E∴⊿BAE

如图,在△ABC中,AB=AC,点D是BC的中线,点E在AD上.请说明AD⊥BC

因为AB=AC所以三角形是等腰三角形,因为等腰三角形三线合一,所以AD⊥BC再问:简单明了就你了!!!

如图,AD是△ABC的中线,DE是△ADC的中线,EF是△DEC的中线,FG是△EFC的中线.

(1)△ABD与△ADC的面积相等证明:∵AD是三角形ABC的中线∴BD=CD又∵△ABD与△ADC同高∴S△ABD=S△ADC(等底同高)(2)S△ABC=16∵E、D、F、G分别是AC、BC、DC

【急】如图,AD是△ABC的中线,DE是△ADC的中线,EF是△DEC的中线,FG是△EFC的中线.

1.三角形ABD和三角形ADC的面积相等,等底同高.2.三角形ABC的面积是16平方厘米.再问:过程、再答:很简单的过程,看图一眼就看出来了。都是等底同高,用三角形面积公式一下子就求出来了。在电脑上画

如图,AD是△ABC的中线,DE是△DEC的中线,FG是△EFC的中线.

(1)△ABD与△ADC的面积相等证明:∵AD是三角形ABC的中线∴BD=CD又∵△ABD与△ADC同高∴S△ABD=S△ADC(等底同高)(2)S△ABC=16∵E、D、F、G分别是AC、BC、DC

如图,已知AD是△ABC的中线.

1.延长AD至点A',使AD=A'D,连接A'B,A'C,则△A'BC即与△ABC成中心2.A'B=AC=4cm ,AB=6cm ,

如图,AD是△ABC的中线,E是AD的中点,如果S△ABD=12,那么S△CDE=______.

△ACD的面积=△ABD的面积=12,△CDE的面积=12△ACD的面积=12×12=6.故答案是:6.

如图,在△ABC中,AD是BC边上的中线,求证:2AD

以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE

如图,AB是△ABC的中线,CE⊥AD于E,BF⊥AD交AD的延长线于F,求证:CE=BF

证明:∵D是BC的中点∴BD=CD∵BF⊥AD,CE⊥AD∴∠DEC=∠DFB=90°∵∠BDF=∠CDE∴△BDF≌△CDE∴CE=BF

如图,已知AD是△ABC的中线,E、G分别是AB、AC的中点,GF平行AD,GF交ED的延长线于F

猜想:EF=AC.理由如下:因为D,E分别是BC,AB的中点,所以,DE平行AC,且DE=AC/2;又因为FG平行AD,所以四边形ADFG是平行四边形,所以,DF=AG;因为G是AC中点,所以,DF=

三角形的证明题2如图,AD是△ABC的中线,E,F分别是线段AC,AD的中点,求证:∠DEF=∠B

延长EF交AB于点G因为E、F分别是线段AC,AD的中点,所以EF平行CD,即EG平行BC,又因为AD是△ABC的中线,所以ED平行AB,所以EDBG为平行四边形,所以∠DEF=∠B

如图延长△abc的中线ad到e

证明:∵AD是中线∴BD=CD∵AD=DE,∠ADC=∠BDE∴△ADC全等于△BDE∴AC=BE,∠C=∠EBD∴AC∥BE

如图 AD是△ABC的中线,BE⊥AD,交AD延长线于点E,CF⊥AD于点F,求证BE=CF

证:∵BE⊥AD,CF⊥AD∴BE//CF∴∠DCF=∠DBE又∵∠CDF=∠BDE,BD=CD∴△CDF≌△BDE(两角夹边)∴BE=CF.证毕.