如图,AF平行于CD,CB平分角ACD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:19:55
(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB于D,∴∠EAD+∠AED=90°,∴∠CFA=∠AED,又∠AED=∠CEF,∴∠
若∠B=30°,很容易证明三角形CEF是等边三角形,你已经求出DE的长,就知道CE的长,知道等边三角形的边长,用勾股定理求出高,面积=2分之1底乘高,还有什么不会算的呢?:)
证明:角CDE=∠DCF=∠FDC由此可以判定出FD=FC由AF=AFAD=AC由此可以判定出△ADF≌△ACF即∠DAF=∠CAF根据对称的原理即可得证AF垂直平分CD证明:∵CD平分∠EDF∴∠E
易证△ADC全等于△BDC易证△ADF全等于△CDE所以DF=DE角DEF=角B=45’所以EF//BC大概就这样过程自己费心吧
证明:∵CA平分∠BCD,AE⊥CB,AF⊥CD∴AE=AF(角平分线性质),∠AEB=∠AFD=90∵AB=AD∴△ABE≌△ADF(HL)∴BE=DF数学辅导团解答了你的提问,
用角平分线定理得:DF:FC=AD:AC,DE:EB=CD:BCAD=CD,AC=BC,所以DF:FC=DE:EB所以EF平行BC
还有其它条件吗?再问:没了再答:什么年纪的题呀?再答:我想那种是60度!再问:为什么啊再答:再答:再答:我是想证明三角形ACE为正三角形,(通过三线合一)再答:我自己觉得可能不对,你斟酌哈再答:认得答
(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG
证明:过点F作FH垂直于AB于H,连结EH.因为角ACB=90度,AF平分角CAB,所以FH=FC(角平分线上的任意一点到角的两边的距离相等),又因为AF=AF,所以直角三角形ACF全等于直角三角形A
题有问题,若是EG平行AB,AF平分角CAB交CD于E,则结论可证证明:过点F作FH垂直AB于H所以角FHC=角AHF=90度因为AF平分角CAB所以角CAF=角HAF因为角ACB=90度所以角ACB
证明:∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=C
自己看吧,第28题,答案在后面
解题思路:(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断
角平分线定理和相似、比例判定平行.证明:EF∥BC.理由如下:∵∠ADC=90°∴∠DAC+∠DCA=90°∵∠DCA+∠BCD=90°∴∠DAC=∠DCB∵∠CDA=∠BDC=90°∴△CDA∽△B
【求AF垂直平分CD】证明:∵CD平分∠EDF∴∠EDC=∠FDC∵DE//BC∴∠EDC=∠DCF∴∠FDC=∠DCF∴DF=CF又∵AD=AC,AF=AF∴⊿ADF≌⊿ACF(SSS)∴∠DAF=
证:AD=AC,DE平行于BC,DC平分∠EDF∴∠EDC=∠DCF=∠CDF∴△CDF是等腰三角形,CF=DF∵∠ADF=∠ACF∴△ADF≌△ACF∠AFC=∠AFDAF,CD交于O△OFD≌△O
证明:因为DE‖BC,CD平分角EDF,那么∠DCB=∠CDE=∠CDF,FD=FC.又AD=AC,于是有AF平分CD.
这个相当于证明DE=DF因为如果DE=DF就有平行线段等分线段定理结果就出来了那么我们把这两边放到2个三角形里就是三角形CDE和三角形ADF因为原三角形ABC是直角等腰三角形所以显然有CD=AD又有一
(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD∵∠ACB=90°,∴∠CAF+∠CFA=90°∵CD⊥AB于D,∴∠EAD+∠AED=90°∴∠CFA=∠AED,又∠AED=∠CEF∴∠CFA=
请问,您的问题是什么?再问:CF与GB之间的大小关系谢谢再答:CF=GB。证法如下:作FH垂直于AB,H为垂足,因AF平分∠CAB,所以FC=FH,设∠CAF=∠BAF=θ,∠AED+θ=90°,∠A