如图,BD⊥AC,CE⊥AB,垂足分别为点D,E,∠B=38
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:33:21
证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,在Rt△ABC和Rt△CDE中,AB=CDAC=CE,∴Rt△ABC≌Rt△CDE(HL),∴∠A=∠ECD,∵∠A+∠ACB=90°,∴
图我没有看到,但是猜是这样做的.因为AD⊥AC,BD⊥CE于O,所以角ACE+角ADO等于180°,又因为角ADO+角ADB等于180°,所以角ACE=角ADB;又因为角CAD=角EAB=90°,所以
(1)证明::∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BDE和△CDF中,∠BED=∠CFD ∠BDE=∠CDF BD=CD ,∴△BDE≌△CDF(
∵AC⊥BC,AD⊥BD∴∠ACB=∠BDA=90°在Rt△ACB和Rt△BDA中AB=BAAD=BC∴Rt△ACB≌Rt△BDA∴∠ABC=∠BAD又∵CE⊥AB,DF⊥AB∴∠AFD=∠BEC=9
因为垂直,所以∠AEC=ADB=90°又因为∠A=∠A,AC=DB,所以△AEC≌△ADB所以BE=CD
证明:∵AB⊥BD,ED⊥BD∴∠ABC=∠CDE=90º又∵BC=DE,AB=CD∴⊿ABC≌⊿CDE(SAS)∴∠ACB=∠E∵∠E+∠ECD=90º∴∠ACB+∠ECD=90
因为再问:������ADEC������0�����������ഹֱ��ֱ�ߣ�����ֳ�4�ݣ����������ֱ������ǡ������ֳɵ��IJ��ֺ�С����ǡ����ƴ�ɴ����
∵AB=AC,BD⊥AC于D,CE⊥AB于E,∴∠ADB=∠AEC=90°,∵∠A为公共角,∴△ADB≌△AEC,(AAS)∴AE=AD,BE=CD,∴△AOE≌△AOD(HL),△BOE≌△COD(
因为AB=AC所以∠ABC=∠ACB因为BD⊥AC,CE⊥AB所以∠BEC=∠CDB=90°因为BC=BC所以△BCE≌△CBD所以CE=BD
证明:AB=AC:∠ABC=∠ACBBD⊥AC:∠BDC=90°CE⊥AB:∠CEB=90°=∠BDCBC是公共边所以:RT△BDC≌RT△CEB(角角边)所以:BD=CE
理由:∵AB=AC,∠ADB=∠AEC=90°,∠A=∠A,∴△ABD≌△ACE.∴AD=AE.∵AC=AB,∴AC-AD=AB-AE.∴BE=CD.
(1)在Rt△ABC与Rt△CDE中∵AB=CDAC=CE∴Rt△ABC≌Rt△CDE∠A=∠DCE∵∠A+∠ACB=90º∴∠DCE+∠ACB=90º从而∠ACE=90º
本题已知条件:AB⊥CD,BD=BE,AB=BC,判断AD与CE的关系即:ΔABC、ΔBDE都是等腰直角三角形.AD=CE,AD⊥CE.证明:延长CE交AD于M,∵AB⊥CD,∴∠ABD=∠CBE=9
解题思路:相似三角形解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p
因为BC=CEAC=CDAC垂直BD,所以△ACB全等于△DCE,所以角A=角D,又因为E两侧的对顶角相等,三角形内角和180,两角均相等,另外一角也相等,都是90°,所以DE垂直AB.不懂再问.再问
解,由题得角ABC=角EDC=角ACE=90度因为,角ECD与角ACB互余;角ACB与角CAB互余所以角CAB=角ECD又因为,CD=AB所以三角形EDC全等于三角形ABC所以,AB=CD
∵AB⊥BDED⊥BD∴∠ABD=∠BDE=90°在△ABC与△CDE中AB=CD∠ABC=∠CDEBC=DE∴△ABC≌△CDE(SAS)∴∠A=∠DCE∠ACB=∠E∴∠A+∠ACB=∠ECD+∠
证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.又∵AB=AC,∴△ABD≌△CAE(AA
AC垂直于CE∵AB⊥BD,ED垂直BD∴∠ACB=90,∠ECD=90∵AB=CD,AC=AE∴ACB≌CED∴∠BAC=∠DCE∵∠BAC+∠ACB=90∴∠ACB+∠DCE=90∴∠ACE=90