如图,P为x轴上任意一点,PB垂直x轴,交直线y=0.5x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:31:09
过点A做BC中垂线.BO=CO三角形APO为直角三角形,三角形AOC为直角三角形,由勾股定理的下.PC×PB+PA^2=(CO+OP)(CO-OP)+PA^2=CO^2-OP^2+PA^2=PA^2-
证明:过点A作AM垂直BC与点M,以点P在点M的左边为例所以AC的平方=AM的平方+MC的平方AP的平方=AM的平方+PM的平方所以AB的平方-AP的平方=MC的平方-MP的平方因为△ABC中,AB=
据题意先求得:△ABP≌△ADP.∠ABP=∠ADP.∴∠CDP=∠CBP.∵∠DEP=∠ACD(45°)+∠CPE.∠CBP=180°-∠BPC-∠BCP(45°),∵∠BPC=90°-∠CPE.∴
勾股定理过A做AM⊥BC于M左式=AM平方+BM平方-(AM平方+PM平方)=(BM+PM)(BM-PM)因为AB=AC所以BM=CM上式=PB*PC
本题可通过构建直角三角形求解,作BC边上的高AF;可在Rt△ABF和Rt△APF中,分别用勾股定理表示出AF的长,联立两式即可求得所证的结论.-----------------------------
作ad⊥bc于dab=ac得:bd=cdab2=ad2+bd2ap2=ad2+pd2相减得ab2-ap2=bd2-pd2=(bd+pd)(bd-pd)=pc*p
过点A作高AD垂直BC于点D在RT△ABD中AB²=AD²+BD²【勾股定理】在RT△APD中AP²=AD²+PD²【勾股定理】AB&sup
做BC垂线AM,垂足M,则BM=CMAB²=AM²+BM²AP²=PM²+AM²∴AB²-AP²=AM²+BM
解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A
证明:在PA上取点D,使PD=PB,连接BD∵等边三角形ABC∴∠ABC=∠ACB=60,AB=BC∵∠APB,∠ACB所对应圆弧都为劣弧AB∴∠APB=∠ACB=60∴PD=PB∴等边三角形BPD∴
这是一个直角三角形,一个直角边为x,另一个为k/x,所以面积为1/2*x*k/x=1/2*x
证明:作AH⊥BC于H,则BH=CH,在Rt△AHP中,AP2=AH2+HP2在△ABH中,AB2=AH2+BH2,∵AB=AC,AH⊥BC,∴BH=CH,∴AB2-AP2=BH2-HP2=(BH+H
(1)设P点坐标为(x,0),有A为(x,0.5x),B为(x,kx),AP=0.5x,BP=kx,PA:PB=0.5:k(2)C点为(2kx,kx),D点坐标为(2kx,2k²x)又D在y
证明:设P为BC上任意一点,作AD⊥BC根据勾股定理得:AP^2=AD^2+BD^2因为AB=AD,AD⊥BC所以根据“三线合一”性质得BD=CD所以PB*PC=(BD-PD)(CD+BD)=(BD-
证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC
证明:在PA上截取PD=PC,∵AB=AC=BC,∴∠APB=∠APC=60°,∴△PCD为等边三角形,∴∠PCD=∠ACB=60°,CP=CD,∴∠PCD-∠DCB=∠ACB-∠DCB,即∠ACD=
证明:设P为BC上任意一点,作AD⊥BC根据勾股定理得:AP^2=AD^2+BD^2因为AB=AD,AD⊥BC所以根据“三线合一”性质得BD=CD所以PB*PC=(BD-PD)(CD+BD)=(BD-
此图可看成是三个小三角形角APB角APC角BPC和为360度所以三个角都大于等于90度在三角形中根据大角对长边所以AC>APBC>BPAB>BP所以
∵PA⊥x轴,AP=1,∴点P的纵坐标为1.当y=1时,34x2-32x+14=1,即x2-2x-1=0.解得x1=1+2,x2=1-2.∵抛物线的对称轴为直线x=1,点P在对称轴的右侧,∴x=1+2
延长AB至Q,使AQ=AC,则BQ=AQ-AB=AC-AB连接PQ,则三角形APQ与APC全等(边角边),故PQ=PC在三角形PBQ中,两边之差小于第三边,PQ-PB<BQ,即PC-PB<AC-AB故