如图,p为△abc中线ad上的一点,且bd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:46:58
如图,已知AD是△ABC的中线

果然是缺了BC的长度这个条件啊.过D向BE做高由于翻折,易得角CDE=角BDE=90度,且DE=DC.又DC=BD,因此DE=BD,即三角形BDE是等腰RT三角形.由此易得BE平行于AD,所以四边形B

如图,AD是△ABC的中线,P为AD上任意一点,连接BP并延长,交AC于F,连接CP并延长,交AB于E,连接EF.求证:

证明:如图,延长PD到M,使DM=PD,连接BM、CM.∵AD是△ABC的中线,∴BD=CD,∵DM=PD,∴四边形BPCM是平行四边形,∴BP∥MC,即PF∥MC,∴AF:AC=AP:AM,同理AE

如图,ad是三角形abc的bc上的中线,求证:ad

延长AD到E,使DE=AD,连结BE∵BD=CD,DE=AD,∠BDE=∠ADC∴△ADC全等于△EDB∴AC=BE在△ABE中,AB+BE>AE即AB+AC>2AD∴AD

如图 已知AD是三角形ABC的中线,P为AD上任意一点 连结BP并延长 交AC于F 连结CP并延长 交AB于点E 连结E

证明:S(ABD):S(ACD)=BD:DC,S(BPD):S(CPD)=BD:DC,相减有S(APB):S(APC)=BD:DC=1.同理,有:S(APB):S(BPC)=AF:FC,S(APC):

如图,已知AD是△ABC的中线.

1.延长AD至点A',使AD=A'D,连接A'B,A'C,则△A'BC即与△ABC成中心2.A'B=AC=4cm ,AB=6cm ,

如图,在△ABC中 AB=AC AD是BC上的中线 P是AD上的一点 过点C作CF‖AB交BP延长线于F BF交AC于E

连接PC,角ABC=角ACBP为角平分线上一点,三角形ABP和ACP全等,PB=PC角PBC=角PCB角ABF=角ECPAB//CF得角ABF=角F角F=角ECP公共角FPC,三角形PCE和PFC相似

如图,已知AD为△ABC的BC边上的中线,P为线段BD上一点,过点P作AD的平行线交AB于点Q,交CD的延长线于点R.

代表相似)因为AD//RP所以三角形BQP~三角形BDA三角形ADC~三角形RPC所以QP/AD=BP/BDRP/AD=PC/CD因为BD=CD所以QP/AD+RP/AD=BP/BD+PC/CD=2所

如图,△ABC的边BC上的高为AF,中线为AD,试说明△ABD于△ACD的面积相等.

ABD的底是BD,高是AFACD的底是CD,高也是AF因为BD=CD,等底等高三角形面积当然相等.

已知 如图 P为三角形ABC的中线AD上的一点 且BD

解题思路:根据题意,由三角形相似的知识可求,根据对应线段成比例解题过程:

已知:如图,在△ABC 中,AB>AC,E为△ABC 的中线AD上的一点 求证:∠EBC<∠ECB

作经过D的辅助线DF垂直于BC,则点F必在BE上,易证三角形BDF全等于三角形CDF(SAS),得到∠EBC即∠FBC=∠FCB,而∠ECB=∠FCB+∠ECF综上,∠EBC=∠FCB<∠ECB

如图,AD是等腰三角形ABC的底边BC上的中线,P是AD上任意一点,试说明∠ABP=∠ACP

/>∵△ABC和△BPC是等腰三角形(已知)∴∠ABD=∠ACD(等腰三角形两底角相等)∵∠1=∠2(同理可得)∴∠ABP=∠ACP忽忽~~大概是这样的吧..也没有图.

如图,AD是等腰三角形ABC的底边BC上的中线,P是AD上任意一点.试说明∠ABP=∠ACP成立的理由

证明:∵AD是BC边上的中线∴BD=CD∵AB=AC,AD=AD∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD∵AP=AP∴△ABP≌△ACP(SAS)∴∠ABP=∠ACP

如图,网格中有一格点△ABC,试画出三边的中线AD,BE,CF,三条中线交于点P.

AP/AD=2√2/3√2=2/3,BP/BE=2/3,CP/CF=2/3结论为AP/AD=BP/BE=CP/CF=2/3P为三条中线交点,是三角形重心重心将每条中线都分成2:1的比例再问:√是什么?

已知:如图,P为△ABC中线的一点,且BD²=PD·AD,求证:△ADC∽△CDP

证明:因为AD是中线所以,BD=CD因为,BD^2=PD.AD,所以CD^2=PD.AD即,CD/AD=PD/CD因为,角ADC=角CDP所以,三角形ADC与三角形CDP相似(等角的两夹边成比例,两三

如图,AD为△ABC的中线,BE为三角形ABD的中线.

∵EG‖BC∴△AEG≌△ABC又∵AE:AB=1/2∴AG:AC=1/2即G是AC中点所以DG‖AB∴△CDG≌△CAB∴S△CDG:S△CAB=(CD:CB)²=(1/2)²=

已知:如图,P为△ABC中线AD上的一点,且BD²=PD*AD,求证:△ADC∽△CDP

应该少了个条件是D是BC的中点吧因为D是BC的中点,所以BD=CD又因为BD*BD=PD*AD所以CD*CD=PD*AD即CD/AD=PD/CD又因为三角形ADC与三角形CDP有一个公共角CDA所以三

如图延长△abc的中线ad到e

证明:∵AD是中线∴BD=CD∵AD=DE,∠ADC=∠BDE∴△ADC全等于△BDE∴AC=BE,∠C=∠EBD∴AC∥BE

如图 在△ABC中,AB=AC,AD为BC上的中线,AD=AE,∠BAD=60°.求∠DEC的度数

120°从已经条件可知,由于△ABC是等腰三角形,且∠BAD=60°,AD为BC上的中线(也就是角平分线)所以∠DAC=60°又因为AD=AE,所以△ADE是等腰三角形.等腰三角形中,一个角为60°,