如图,P是三角形ABC内一点,连接PA,PB,PC在三角形PAB,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:11:43
如图,△ABC是等边三角形,P是三角形内一点,PD//AB,PE//BC,PF//AC,若△ABC的周长为12,则PD+

因为三角形ABC为等边三角形所以∠A=∠B=∠C=60度AB=BC=AC=4先把DPEPFP延长交BC于G,交AC于H,交AB于K因为DP平行AB所以∠DHC=∠A=60度所以PE=HE因为FP平行A

如图8,已知在三角形abc中,ab=ac,p是三角形abc内一点,且∠apb大于∠apc.求证:pc大于pb

证明:以AC为边,在△ABC外作∠CAQ=∠BAP,且AQ=AP,连接CQ∵AB=AC,∠BAP=∠CAQ,AP=AQ∴△ABP≌△ACQ(SAS)∴∠APB=∠AQC,PB=QC连接PQ∵AP=AQ

如图,点P是等边三角形ABC内一点,PA=1,PB=根号3,PC=2,求三角形ABC的周长.

过C点作CD=2,且∠BCP=∠ACD连结AD,那么△BPC≌△ADC连结PD,得到△PDC是等边三角形AP=1,AD=√3,PD=2所以∠PAD是直角∠ADP=30°(没学三角函数,但是直角三角形一

如图,P是三角形ABC内一点,请想一个办法说明AB+AC>PB+PC

延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+DE=AC)

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

如图,已知三角形ABC是等边三角形,P是三角形内一点,∠BPC=150°,PB=2,PC=1,求PA的长

将△PBC旋转60°,使BC与AC重合,旋转后的图形为△ACD,连接DP,则∠PDC=60°,∠PDA=90°且PD=2,DA=1,所以AP=√5

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

如图P是三角形ABC内一点,说明角BPC与角BAC的大小关系

角BPC=90°+1/2角A需要证明要加多一个条件(bp和pc是角平分线)证明:角BPC=180°-1/2(角ABC-角ACB)=180°-1/2(180°-角A)=180°-90°+1/2角A=90

如图,设P为三角形ABC内任意一点,求证:1/2

因为PA+PB>AB,PB+PC>BC,PA+PC>AC,三式相加得2(PA+PB+PC)>AB+BC+CA,所以PA+PB+PC>1/2(AB+BC+CA)

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

初二三角形中位线1.如图,△ABC是等边三角形,P是三角形内一点,PD//AB,PE//BC,PF//AC,若△ABC的

1.根据题意画出的图不清楚,没法求值2.延长DM交CB的延长线于点H∵AD‖BC,∴∠H=∠ADM,∠DAM=∠MBH,∵AM=BM,∴△AMD全等于△BMH,∴AD=BH,DM=HM∵AD‖BC,∴

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,P是三角形ABC内的任意一点.求证:PB+PC大于AB+AC.

题目错了!延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+D

如图1,P是三角形ABC内一点,连接PA、PB、PC,在三角形PAB、三角形PBC和三角形PAC中

你好!(1)由直角三角形斜边上的中线等于斜边的一半得到BD=CD,所以∠DBC=∠DCB,又因为∠BEC=∠ACB=90°,所以△BEC∽△ACB,(2)由相似三角形及p是三角形自相似点,得到∠B+∠

已知P是三角形ABC内一点,连BP,CP.

作辅助线,延长bp到ac,相交点为rab+ar>brcr+pr>cp然后相加ab+ar+cr+pr>br+cp由于ac=ar+crbr=bp+pr带入上不等式所以ab+ac>bp+cp

如图,P是三角形ABC内的一点,连接PB,PC.证角BPC大于角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

如图,p是正三角形ABC内的一点,若将三角形PAB绕点A逆时针旋转到三角形P'AC,则角PAP'等

∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及