如图,rt三角形abc中∠acb=90以ac为直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:21:55
.如图在rt三角形abc中 c 90度 AC=2 CB=3..

1、BC垂直于EF,BC垂直于AC,所以EF//AC,因为AE//CF.SO,EACF是平行四边形.Y=X*2.2、AB=√13,如果四面行EACF能为菱形,则EB/AB=DB/BC,得BD=3-6/

如图,在RT三角形ABC中,∠ACB=90,AC=5,CB=12

证明:由于△ABC为直角三角形,且∠ACB=90°,且D在圆上则有AD为直径从而有∠AED=90°因为∠ACB=∠AED=90°,AD=AD,∠CAD=∠EAD所以△ACD全等于△AED所以AE=AC

如图,在rt三角形abc中,ab=ac,∠bac=90°,d为bc中点

等腰直角三角形AN=BM,AD=BD,NAD=MBD=45所以NAD全等MBDDN=DMNDM=NDA+ADM=ADM+MDB=90

如图,RT三角形ABC中,

如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4

如图,在Rt三角形ABC中,∠ACB=90°,AB=2AC,D为AB边上中点,连接CD,证明三角形ADC为等边三角形

因为AB=2AC,D为AB边上中点所以,AD=AC因为在Rt三角形ABC中,COS角CAB=AC\AB=1\2所以角A=60度因为AD=AC所以三角形ADC为等边三角形再问:cos是什么意思再答:你们

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图,1已知rt三角形abc中ab=ac角abc=

ight-angledtriangle的缩写直角三角形又AB=AC则角A为直角为90°则剩余两个角都为45°则角ABC=45°

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图 在Rt三角形ABC中 ∠C=90度,BC=根号3,三角形ABC的面积为3,求AC及AB的长

∵∠C=90°∴S△ABC=BC×AC又∵S△ABC=3,BC=根号3∴AC=3×2÷根号3=2根号3由勾股定理可得:AB=根号[(2根号3)²+(根号3)²]=根号15即AC=2

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

如图,在rt三角形abc中,角bac等于90度,ac等于2a

解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件

已知:如图,在Rt三角形ABC中,∠ACB=Rt∠,AC=BC,CD⊥AB于点D.求证:三角形ACD相似于三角形ACB

∠CAD=∠BAC,∠ADC=∠ACB=90°所以△ADC相似△ACB再问:是∠CAD=∠ABC吧。对应角。哦还有当时没学两个三角形相似的判定。这题是在介绍引入相似三角形概念那里的练习题。所以应该是让

在Rt三角形ABC中,∠B=90°,DE垂直平分AC交AC于D,交BC于E,连接AE,如图,在Rt三角形ABC中,∠B=

∵∠BAE:∠BAC=1:5∴∠BAE∶∠EAC=1∶4又∵DE垂直平分AC∴DA=AC同时∵ED=DE,∠EDA=∠EAC=90°,DA=AC根据SAS定理△ADE≌△CDE∴∠BCA=∠EAC设∠

如图,RT三角形ABC中,角ACB=90度,AC=4,

1、设P至AB距离为PQ,△APQ∽△ABC,PQ/BC=AP/AB,根据勾股定理,BC=3,PQ=y,AP=AC-PC=4-x,y=3(4-x)/5.2、设内切圆半径=r,连结内心O与三顶点,OA、

如图,在Rt三角形ABC中,AC=60cm,CB=80cm

设经过x秒,则CP=3x,CQ=4x,∴由勾股定理得:PQ=5x=40,∴x=8秒.而3×8<60,4×8<80.∴经过8秒两点相距40㎝

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的

如图,在Rt三角形ABC中,AD平分角BAC,AC=BC,角

解题思路:请把图发过来解题过程:请把图发过来最终答案:略