如图,y=ax²-4ax m
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:13:41
将A(-4,8)代入y=ax^2:8=16a则a=1/2抛物线解析式为:y=x^2/2则B点座标为:B(2,2)点B关于x轴对称点P的坐标:P(2,-2)Q点的确定:连接AP,直线AP与X轴的交点即是
(1).由于B点,x=0,则y=3.所以B点坐标为(0,3).因二次函数抛物线经过B点,故满足解析式,得:c=3.又因该二次函数经过C(-1,0),所以又可得0=a+4a+3,所以a=-3/5.所以该
系数是-a=4次数,x次数是m,y次数是2所以m+2=5所以a=-4m=3
(1)将A、C坐标代入抛物线y=ax²-2ax+c得:0=9a-6a+c4=c解得:a=4/3,c=4所以抛物线解析式为y=4x²/3-8x/3+4(2)
(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀
抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:
因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去); 因为ac=1,c
y=a(x+b/(2a))^2+c-(b^2)/(4a)则对称轴为x=-b/(2a)M坐标(-b/(2a),c-(b^2)/(4a))设两解为:x1、x2OA·OB=(-b/(2a)-x1)(x2+b
答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0
(1)用待定系数法先求出反比例函数的解析式,y=-4/x,然后求出M点的坐标是(-2,2),这样就可以求出一次函数的解析式是y=-2x-2(2)在坐标系里用割补法可以求出三角形MON的面积是3(3)通
写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X
抛物线y=ax²向右平移1个单位,向下平移4个单位,得y=(x-h)²+k则h=1,k=-4所以新抛物线:y=(x-1)²-4,顶点D(1,-4)其与x轴的交点为:0=(
先将y=ax²+bx+c改为y=a(x+k)²+c将顶点(-2,2)带入方程,得y=a(x+2)²+2在将点A带入方程3=a(0+2)²+2解a=4/1从题意得
⑴由己知条件得9a+3b+c=0,a-b+c=0,c=3,解之,得a=﹣1,b=2,c=3;∴y=﹣x²+2x+3;⑵y=﹣x²+2x+3=﹣﹙x²-2x+1-1﹚+3=
解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t
带入N(-1,-4)得反比例函数解析式为y=4/x∴M(4,1)带入解得y=x-3S△MON=7.5(分解求面积比较简单不多说)
函数有三个零点-2,0,1,因此f(x)=a(x+2)x(x-1)=ax^3+ax^2-2ax,所以,a>0(因为x趋于正无穷时,y趋于正无穷),b=a>0,c=-2a再问:为什么楼上选A.呢.再答:
(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4
(1)设平移后的直线的解析式为:y=3x+b∵直线y=3x+b过P(1,4),∴b=1,∴平移后的直线为y=3x+1∵M在直线y=3x+1,且设M(x,3x+1)①当点M在x轴上方时,有(3x+1)/