如图,△ABC中,AD是BC边上的高,E,F,G分别是AB,BC,CA边上的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:49:51
如图,△ABC中,AD是BC的中线,EF是中位线,求证:AD、EF互相平分.

EF是中位线,所以EF与底边BC平行,连接DF,DE.DE和DF也分别是三角形的中位线,所以,AEDF构成一个平行四边形.AD和EF是平行四边形的对角线,所以相互平分

如图,在△ABC中,AD平分∠BAC,D是BC的中,证明AB=AC

证明:如图,作DF⊥AB,DE⊥AC,∵AD平分∠BAC,∴DE=DF,∠BFD=∠CED=90°,∵D是BC的中点,∴BD=CD,在Rt△BDF和Rt△CDE中,DF=DE,BD=CD∴Rt△BDF

如图,在△ABC中,AB>AC,E是BC边的中点,AD平分∠BAC,EF‖AD,试说明:CF=DG.

应该是BG=CF吧?延长GE到点M,使EM=EF∵BE=CE,∠BEM=∠CEF∴△BEM≌△CEF∴∠F=∠M,BM=CF∵AD‖GE∴∠F=∠CAD,∠BGE=∠BAD∵∠CAD=∠BAD∴∠F=

如图,在△ABC中,AD垂直平分BC,H是AD上的一点,连接BH,CH

(1)AD是BC的中垂线所以AB=AC,HB=HC,所以AB=AC,BD=CD,AD=AD三角形ABD全等于三角形ACD所以角BAD=角CAD所以评分啊(2)角BAD,CAD,ABH,ACH,HBD,

如图,在△ABC中,延长边BC到D,使得AB=CD,则是比较AD的BC的大小关系,并说明理由

AD>BC证明如下:过C点作AB的平行线,过A点作BC的平行线,二者交点为E.则ABCE为平行四边形,CE=AB=CDAE=BC.所以三角形CED是等腰三角形,则∠CED=∠CDE而∠CED+∠CEA

如图,在△ABC中,AD是BC边上的中线,求证:2AD

以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE

初二数学.如图,△ABC中,AD,AE分别是△ABC中BC的高、中线,已知AD=8,CE=7.

∵CE=7AD=8∴根据三角形面积公式S△AEC=AD×CE/2∴S△AEC=8×7÷2=28又∵点E为BC中点,∴BE=CE=7△ABE的高也是AD∴S△ABE=BE×AD/2S△ABE=7×8÷2

如图,在△ABC中,AB=13,AD=5,BC=24,AD⊥BC于点D.试说明△ABC是等腰三角形

∵AD⊥BC∴BD²=AB²-AD²=13²-5²=144=12²∴BD=12∴DC=BC-BD=24-12=12∴BD=DC又∵AD⊥BC

如图,在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC交AB于E,EC交AD于F

1:DE⊥BC,D为BC的中点,那么在△BEC中,BE=EC,那么△ABC=△FCD2:三角形FCD=5是什么意思?面积?

已知:如图,在△ABC中,点D在边BC上,BE平行CF,且BE=CF.求证:AD是△ABC的中线.

我来回答∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD.∵∠BDE=∠CDF,BE=CF,∴△BED≌△CFD.∴BD=CD.∴AD是△ABC的中线.

如图,在△ABC中,AD是BC边的高线,同时也平分∠BAC,试判断AD是否平分BC边,并说明理由

因为AD是BC的高线所以∠ADB=∠ADC=90°又因为AD=AD∠BAD=∠CAD所以△ABD和△ACD为全等三角形(ASA)则BD=CD即AD平分BC

如图△ABC中AD是BC边的高线同时也平分LBAC试判断AD是否平分BC边并说明理由

AD平分BC证明:∵AD是BC边的高∴∠ADB=∠ADC=90°∵AD平分∠BAC∴∠BAD=∠CAD又∵AD=AD∴△ABD≌△ACD(ASA)∴BD=CD即AD平分BC

如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线

(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB=1/3,

如图,在△ABC中,延长边BC到D,使得AB=CD,则是比较AD的BC的大小关系,并说明理由.

证明:在△ABD中AD>BD-AB(三角形两边差小于第三边)∵AB=CD∴AD>BD-CD即AD>BC

如图,△ABC中,AB=AC,AD是角EAC的平分线.求证:AD‖BC

∵AB=AC∴∠B=∠C∵AD是角EAC的平分线∴∠1=∠2∵∠1+∠2=∠B+∠C∴∠2=∠C∴AD‖BC

已知,如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线EF交bc

证:∵AD平分∠BAC,∴∠BAD=∠DAC又∵EF垂直平分AD,∴AF=DF,∴∠DAF=∠ADF∵∠BAF=∠BAD+∠DAF,∠ACF=∠DAC+∠ADF∴∠BAF=∠ACF.这很简单啊.

如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.

证明:连接ED.∵D、E分别是边BC、AB的中点,∴DE∥AC,DEAC=12,∴∠ACG=∠DEG,∠GAC=∠GDE,∴△ACG∽△DEG.∴GEGC=GDAG=DEAC=12,∴GEGE+CG=