如图,△ABC中,M是BC的中心,AD是∠A的平行线,BD⊥AD于D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:01:31
证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=12∠ABC=12×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠D
1,连接ED四边形MDEF是平行四边形DE=MF=1/2ABPF是三角形PAB的中位线M是BP的中点2,S=3+XX<63,3+X=6*4/2/2当点P在BC中点时,梯形MCEF的面积为△ABC的面积
MN:BC=1:4证:连接DN,并延长DN交BC与F∵E是AB中点,D是AC中点∴ED‖BC(三角形中位线平行于第三边)∴ED=½BC(三角形中位线等于第三边一半)∴∠DEN=∠
以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE
∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠MDA∴∠F=∠MDA∴AF=AD∵M是中点∴利用等腰三角形三线合一可以得到AM⊥FD∴AM//B
∵AE∥BC∴∠EAD=∠BDA∵O是AD的中点∴AO=DO∠AOE=∠DOB∴ΔAOE≌ΔDOB∴AE=BD∴四边ABDE是平行四边形(AE平行且相等BD)
证明:联结EM、DM,则EM=1/2BC,DM=1/2BC故EM=DM又P为DE的中点,所以PM⊥DE.
等于.∵AM=CM,N是AC的中点∴MN为AC的垂直平分线,即MN⊥AC∵MN//BC∴BC⊥AC∴Rt△ABC中,AM=CM∴∠CAB=∠MCA∵∠CAB+∠ABC=90°=∠MCA+∠MCB∴∠A
延长BD,与AC交于点E∵∠BAD=∠EADAD=AD∠ADB=∠ADE=90°∴△ADB≌△ADE∴AE=AB=12BD=DE∵BM=CM∴DM=1/2EC∴EC=2DM=10故:AC=AE+CE=
证明:连接MF、ME,∵CF⊥AB,在Rt△BFC中,M是BC的中点,∴MF=12BC(斜边中线等于斜边一半),同理ME=12BC,∴ME=MF,∵N是EF的中点,∴MN⊥EF.
(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB=1/3,
证明:连接AM在直角三角形ACM中AM平方等于AC平方加CM平方(1)在三角形ADM中,AD平方等于AM平方减去MD平方(2)(1)式代入(2)式得AD平方等于AC平方加CM平方减MD平方在三角形BD
证明:连接MD、ME.∵BD是△ABC的高,M为BC的中点,∴在Rt△CBD中,MD=12BC,(直角三角形斜边上那的中线等于斜边的一半)同理可得ME=12BC,∴MD=ME,∵F是DE的中点,(等腰
证明:MN是BC垂直平分线,BM=CM∠B=∠MCBAD⊥BC,∠B+∠BAD=90,∠MCB+∠DEC=90∴∠DEC=∠BAD∵∠AEM=∠DEC∴∠AEM=∠BADAM=EM.因此M在AE垂直平
连结MD,ME.因为BD是高,所以BC是直角三角形BCD的斜边,因为M是BC的中点,所以MD=BC/2,同理ME=BC/2,所以MD=ME,三角形MDE是等腰三角形,因为N是DE的中点,所以MN垂直于
延长BD,交AC于点N∵AD⊥BN,AD平分∠BAN,AD=AD∴△ABD≌△AND∴AB=AN,BD=DN∵M是BC的中点∴DM是△BCN的中位线∴DM=1/2CN=1/2(AC-AN)=1/2(A
等边所以角a=b=45,ema+dme+dmb=18dme=45,所以ema+dmb=135.角a+ema+aem=180所以ema+aem=135所以aem=dem,a=b,am=mb角角边得出三角
辅助线:连接DF,ED.∵BE⊥AC,CF⊥AB.∴RT△CFB,RT△EBC又∵D是斜边BC的中点.∴DF=DE(定理:RT△斜边中线是斜边的一半).∴等腰△DFE.∵M是EF中点.∴DM⊥EF(定
证明:延长AB与CF的延长线相交于点G因为AD平分角BAC所以角BAF=角CAF因为CF垂直AD交AD的延长线于F所以角AFG=角AFC=90度因为AF=AF所以三角形GAF和三角形CAF全等(ASA